National Repository of Grey Literature 116 records found  beginprevious95 - 104nextend  jump to record: Search took 0.02 seconds. 
Optimization of SLM process for manufacturing of assault rifle muzzle device
Kubrický, Jakub ; Majzlík, Pavel (referee) ; Vtípil, Jaroslav (advisor)
The thesis deals with optimization of the manufacturing process of the muzzle device designed for assault rifle. The most common titanium alloy named Ti-6Al-4V was chosen for this task. The introduction summarizes previously existing types of muzzle devices and further describes the SLM technology with a special focus on titanium alloys processing. The optimization methods and their follow-up testing were designed according to theoretical knowledge that is summarized in the theoretical part of this work. Firstly, the aim was to describe the optimization of the manufacturing process with attention to preserving the relative density of the parts. Secondly, the mechanical properties of the parts that underwent different heat treatment were tested.The obtained data were then used to design and manufacture a muzzle device that underwent further testing in real condition afterwards.
Optimization of axle carier for formula student for SLM fabrication
Vaverka, Ondřej ; Růžička, Bronislav (referee) ; Koutný, Daniel (advisor)
This diploma thesis deals with design of axle carrier for Formula Student. The axle carrier is topologically optimized and additively manufactured with Selective Laser Melting technology. Material for its production is aluminium alloy AlSi10Mg, which has worse mechanical properties than commonly used high-strength alloys. Therefore the aim was, by using topology optimization, to design a component, which would have comparable properties with milled component. The stress strain analysis was carried out by the finite element method and maximum deformation and safety coef-ficients were acquired. The prototype was made and its dimensions were controlled by optical digitization, which proved accuracy of manufacturing. The strength calcu-lations were verified by special testing device and photogrammetry measurement. The load during the tests was 20 % higher than in the analysis and no limit state was observed. This verified its safety and functionality.
Processing of high-strength aluminum alloy EN AW 7075 using SLM technology
Skalický, Petr ; Hudák, Radovan (referee) ; Koutný, Daniel (advisor)
This diploma thesis deals with processing of high strength aluminum alloy EN AW 7075 by Selective Laser Melting and verify the influence of process parameters on relative density and mechanical properties. The theoretical part contains an introduction to additive manufacturing of aluminum alloys, the influence of process parameters and description of processes occuring during SLM production. Based on the theoretical part were prepared experiments and method of evaluation. Samples were produced by melting metallurgical powder using ytterbium laser with a maximum output power of 400 W. This diploma thesis also describes the formation and growth of cracks inside the material, which so far in the literature for alloy EN AW 7075 were not described. As the result, the process parameters dependence on the relative density and an overview of this aluminum alloy processing by SLM technology is determined.
SLM process parameters optimization for processing of AW2618 aluminum alloy
Těšický, Lukáš ; Dočekalová, Kateřina (referee) ; Koutný, Daniel (advisor)
The diploma thesis deals with possibilities for processing aluminium alloy EN AW 2618 using Selective laser melting (SLM). The theoretical part contains basic knowledge about production by this technology and possibilities of evaluation of relative density of samples. It also contains an overview of the current state of knowledge about the processing of aluminium alloys by SLM technology. Above all, aluminium alloys of the series 2000, where the main alloying element is copper. In the experimental part testing samples were designed based on the research. These samples can be divided into three areas: single-track specimens, volume samples and samples for tensile testing. Single-track and volume samples were used to find appropriate processing parameters to achieve a relative density close to full volume of material. For this purpose, the effect of the different scanning strategies on the relative density of the sample were examined. The limiting factor has been the occurrence of small cracks in the broad range of parameters studied. Mechanical properties of samples produced by SLM were compared with extruded material. It was found that the material processed by SLM achieves only half the yield strength and tensile strength of extruded material. This is mainly due to the occurrence of small cracks and other defects in the structure of the material.
Design of coating system with integrated milling head for 3D printing of metal prototypes
Rafaja, Hynek ; Vrána, Radek (referee) ; Koutný, Daniel (advisor)
The bachelor thesis deals with conceptual and design solution of coating system with integrated milling head for 3D printing of metal prototypes. It contains a simple overview of produced machines with similar technology. Further, the thesis contains conceptual solutions from which the final version is selected according to the specified parameters. Based onthe selected variant, a design of the application system with a built-in milling head for SLM280HL is created and detailed.
Evaluation of Mechanical Properties of Lattice Structures Made by 3D Metal Printing
Pliska, Jan ; Skřivánková, Vendula (referee) ; Vrána, Radek (advisor)
Additive manufacturing technologies allow manufacturing of complex structures which are near impossible to manufacture by other more conventional technologies. A fine example of these complex structures is a periodic metallic micro-cellular structure This bachelor thesis is focused on summarization of known mechanical behaviour of lattice structures manufactured via Selective Laser Melting. This study also investigates suitable comparison criteria for lattice structures. Required values for determination of material constants were obtained from mechanical testing of real specimens. For faster evaluation of mechanical testing, automatic script in MS Excel was created. Research showed up some of the major parameters characterising the mechanical behaviours of lattice structures. It is possible to compare qualities of lattice structures based on criteria presented in this work.
Development of processing strategy for manufacturing of tubes using metal additive manufacturing
Zemek, Albert ; Zemanová, Lucie (referee) ; Koutný, Daniel (advisor)
This bachelor´s thesis is focused on finding a suitable process parameters for building an overhanging parts without need of any support structure in Selective Laser Melting process. The main focus is on fabrication of circular parts, which are often used in the industry. In this paper, there were designed test specimens for different process parameters. Also a novel function for nonconstant process parameters was probed. After the fabrication, the specimens were tested in order to evaluate their dimension accuracy.
Process Parameters Development for Producing of Lattice Structures Using 3D Metal Printing
Moravčik, Jaroslav ; Koutný, Daniel (referee) ; Vrána, Radek (advisor)
Selective laser melting (SLM) belongs to additive technologies. Progressive adding of layers of material powder and creating the structure with laser beam allows to create components with complex shapes, for example microstructures. This thesis explores potential of new printing strategies, which could lead to good melting of printed component and reaching to better structure without porosities. Based on analysis of actual state, software for calculation of laser trajectory was made with use of new printing strategy. Also, process parameters obtained from technical articles and from experiments made on Institute of Machine and Industrial Design on Faculty of Mechanical Engineering BUT in Brno were compared. This comparison led to suggestion of test set of components with new parameters and strategies. This set could lead to new researches in this issue.
Experimental chamber for testing of special materials using SLM technology
Malý, Martin ; Dočkal, Aleš (referee) ; Koutný, Daniel (advisor)
The thesis deals with the influence of process temperature and pressure on 3D printing using Selective Laser Melting. The aim of the thesis is the design, manufacture and testing of the experimental chamber for SLM 280HL from company SLM Solutions. The main task of the experimental chamber is to increase the temperature of the preheating of the powder bed from the original 200 °C to at least at 400 °C. The device will be used to investigate the influence of high process temperature on the properties of printed materials. The thesis also deals with the design of the powder applicator for elevated temperatures.
Advanced Fabrication of Custom Orthopaedic Implants Using Selective Laser Melting Technology
Trubačová, Pavlína ; Sedlák, Josef (referee) ; Píška, Miroslav (advisor)
This work describes advanced fabrication of custom orthopaedic implants using unconventional additive manufacturing technology - Selective Laser Melting (SLM). There was a main focus on custom knee replacement and certainly on its femoral component. The study investigated three general issues within the domain of the usage of additive manufacturing technology in medical application. First, there was an evaluation of process parameters influences of SLM fabrication method on surface and mechanical properties of titanium Ti6Al4V ELI specimens. This material was used because of its biocompatibility and its wide use within implant fabrication. Then, a proposal of the manufacturing strategy was carried out and the fabrication of customized knee femoral component prototype by SLM technology was done. The elaboration of the numerical chain prior the SLM implant fabrication, from patient's CT knee scan to final femoral replacement model, was also done. Then, a proposal of different 3-axis and 5-axis strategies of machining of the fitting femoral surface of bone prototype (3D printed from the powder) using CNC machines FV 25 CNC and TAJMAC ZPS MCV 1210 was projected and also, the 3-axis spiral machining was realised. The individual machining tool paths were generated by software Power Mill from Delcam group. Finally, these machining strategies were generated as a prior step before a machining of real patient’s bone, therefore the machining tests of cartilage and bone were done.

National Repository of Grey Literature : 116 records found   beginprevious95 - 104nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.