National Repository of Grey Literature 76 records found  beginprevious31 - 40nextend  jump to record: Search took 0.01 seconds. 
Pulse flow of liquid in flexible tube
Komoráš, Miroslav ; Šedivý, Dominik (referee) ; Klas, Roman (advisor)
This master’s thesis is dealing with analysis of fluid flow pulse in a flexible tube representing e.g. an artery in a human body. In ANSYS program, 3D simulations were performed, and these are so-called interrelated FSI analysis. In Maple software, 1D simulations of fluid flow in the tube were performed for various thin-walled and thick-walled variants. The aim is using these programs to determine the flow rates and pressures in the tube, its wall deformation and stress. Therefore, the theoretical part deals mainly with basic equations of flow dynamics, linear and nonlinear models and rotationally symmetric vessels. In the computational part are described individual procedures in the mentioned programs.
USING MODERN NUMERIC METHODS IN DESIGN OF LOW VOLTAGE CIRCUIT BREAKERS
Dostál, Lukáš ; Hüttner, Ľudovít (referee) ; Petráček, Miloš (referee) ; Aubrecht, Vladimír (advisor)
The theses is focused on efficient use of numerical methods in development of low-voltage switching devices, namely to create a physically correct and reliable numerical model of the temperature field to find an application in the design of the current path of a device for various operating conditions. The creation of this numerical model requires not only correct inclusion of all modes of heat transfer - conduction, convection and radiation, but also correct solution of problematic transient resistance - both electrical and thermal in electrical contacts at different stages of usage. Therefore an essential part of the theses forms a thorough experimental analysis of the necessary material properties and dependencies which forms input data for the numerical model that is based on the finite volume method. The last part of the theses deals with debugging and verification of numerical model to correspond with experimentally obtained data. The result of the theses is the numerical model which is able to solve correctly both steady and various transient states of swiching devices.
Mathematical Modelling of Surface Water Waves
Rauš, Michal ; Štoudková Růžičková, Viera (referee) ; Kisela, Tomáš (advisor)
Tato diplomová práce se zabývá matematickým modelováním vodních vln v blízkosti pobřeží pomocí parciálních diferenciálních rovnic. Cílem této práce je formulace pohybových rovnic a jejich následné numerické řešení s grafickou interpretací dosažených výsledků.
Comparison of Finite Volume and Spectral/HP Methods on Navier - Stokes Equations for Unsteady Incompressible Flow
Pech, Jan ; Louda, Petr
We provide a comparison of solutions to the incompressible Navier-Stokes equations obtained using codes based on finite volume and spectral element methods. Convergence properties are compared on test case with analytical solution. The dependence of Strouhal and Reynolds numbers for flow over a cylinder is reconstructed for both methods.\n\n
Mathematical-physical analysis of dynamic pressure for the experimental differentially pumped chamber
Lepltová, Kristýna ; Bílek, Michal (referee) ; Maxa, Jiří (advisor)
This thesis is based on the series of scholarly article dedicated to the issue of pumping in the differential scanning chamber of an environmental scanning microscope. The thesis is based on Danilatos’s study where the pumping of the differential pumped chamber is solved by means of the Monte Carlo statistical method. The thesis analyzes gas flow in the experimental chamber using the Pipot tube. The analyses will be used for the design of the experimental chamber which will serve for the experimental evaluation of the flow results in the chamber using the continuum mechanics.
Numerical Simulation of Laminar-Turbulent Transition in Accelerated Flows
Fürst, J. ; Příhoda, Jaromír
The article deals with the evaluation of two RANS based models for simulation of transitional flows including heat transfer. The work is focused on the transition and heat transfer in cases of accelerated flows over a flat plate and through a test turbine cascade.
Boundary conditions for stratified flows
Řezníček, Hynek ; Beneš, Luděk (advisor) ; Brechler, Josef (referee)
In this thesis is presented mathematical model of stratified 2D flow of viscous incopressible fluid and its program realization. Basic equations of fluid flow in Boussinesq approximation were solved by finite volume method on structured nonortogonal grid. Discretization was done by the principle of semi-discretisation. The space derivative was solved by AUSM me- thod with MUSCL velocity reconstruction. The viscid terms were solved through auxiliary grids. During time discretization artificial compressibility method was used in dual time. The resulting system of ODEs is integrated in time by a suitable Runge-Kutta multistage scheme. Numerical experiments were calculated for flow with Reynolds number equals 1000. Further 3 numerical experiments are presented with different boundary conditions. 1
ADER schemes for the shallow water equations
Monhartová, Petra ; Felcman, Jiří (advisor) ; Dolejší, Vít (referee)
In the present work we study the numerical solution of shallow water equations. We introduce a vectorial notation of equations laws of conservation from which we derive the shallow water equations (SWE). There is the simplify its derivation, notation and the most important features. The original contribution is to derive equations for shallow water without the using of Leibniz's formula. There we report the finite volume method with the numerical flow of Vijayasundaram type for SWE. We present a description of the linear reconstruction, quadratic reconstruction and ENO reconstruction and their using for increasing of order accuracy. We demonstrate using of linear reconstruction in finite volume method of second order accuracy. This method is programmed in Octave language and used for solving of two problems. We apply the method of the ADER type for the shallow water equations. This method was originally designed for the Euler's equation.
Calculation of the cooling of the asynchronous machine ANSYS CFX
Horálek, Lukáš ; Veselka, František (referee) ; Janda, Marcel (advisor)
The issue this master’s thesis discusses the cooling synchronous machines. Specifically, the calculation of cooling induction motor using the finite volume method. Using Autodesk Inventor will create a 3D model of a real electric machine, ie asynchronous motor and then ANSYS WORKBENCH perform system analysis CFX, based on the finite volume method. Furthermore, we realize the air speed measurements on a particular machine and the individual results obtained by measuring and calculating the actual compared with each other. The master’s thesis also deals marginally with closely related to it. For the same machine model, we apply the calculation of the temperature fields using the finite volume method and them perform a thermal analysis. Next, we can carry out the measurement of the temperature on the motor itself and calculate the measured values and the measured compare each other.
Computer simulation and numerical analysis of compressible flow problems
Kubera, Petr
The thesis deals with the construction of an adaptive 1D and 2D mesh in the framework of the cell- centered finite volume scheme. The adaptive strategy is applied to the numerical solution of problems governed by the Euler equations, which is a hyperbolic system of PDE's. The used algorithm is applicable to non-stationary problems and consists of three independent parts, which are cyclically repeated. These steps are PDE evolution, mesh adaptation and interpolation of numerical solution from the old mesh to the newly adapted mesh. Owing to this the algorithm can be used also for other hyperbolic systems. The thesis is focused on the development of our mesh adaptation strategy, based on the anisotropic mesh adaptation, which preserves the geometric mass conservation law in each computational step. Several test problems with moving discontinuity are computed to compare our algorithm with Moving Mesh algorithms. Keywords: finite volume method, adaptive methods, geometric mass conservation law

National Repository of Grey Literature : 76 records found   beginprevious31 - 40nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.