Národní úložiště šedé literatury Nalezeno 66 záznamů.  začátekpředchozí21 - 30dalšíkonec  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Air-pressure characteristics and visualization of bubbling effect in water resistance therapy
Radolf, Vojtěch ; Horáček, Jaromír ; Bula, Vítězslav ; Laukkanen, A. M.
This study investigates the influence of a widely used method in voice training and therapy, phonation into a resonance tube with the outer end submerged in water (‘water resistance therapy’ with bubbling effect). Acoustic and electroglottographic (EGG) signals and air pressures in the mouth cavity were registered and the formation of bubbles was studied using high speed camera. Bubbling frequency dominates in the spectra of the pressure signal being about 15 dB higher than the amplitude of the first harmonic, which reflects the fundamental frequency of the vocal folds’ vibration. Separation of the bubbles 10 cm under water surface starts when the buoyancy force acting on the bubble is approximately equal to the aerodynamic force in the tube.
Numerical simulation of videokymographic images from the results of the finite element model
Švancara, P. ; Horáček, Jaromír ; Martínek, T. ; Švec, J. G.
The study presents a two-dimensional (2D) finite element (FE) model of the fluid-structure-acoustic interaction during flow induced self-oscillation of the human vocal folds. The FE model combines the FE models of the vocal folds, the trachea and the simplified human vocal tract shaped for phonation of vowel [a:]. The fluid-structure interaction is solved using explicit coupling scheme with separated solvers for structure and fluid domain. The developed FE model comprises large deformations of the vocal-fold tissue, vocal-fold contact, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), solution of unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. The effect of lamina propria thickness and material properties on simulated videokymographic (VKG) images of vocal-fold vibrations are analyzed. Such variation of the lamina propria properties can be caused by certain vocal-fold pathologies such as Reinke's edema. The developed FE model can be used to study relations among pathological changes in vocal folds tissue, the resulting VKG images and the produced sound spectra.
Measurement of acoustic input impedance of the human vocal tract models
Radolf, Vojtěch ; Dlask, P. ; Otčenášek, Z.
Input acoustic impedance of the human vocal tract models made of plexiglass was measured using the measurement system BIAS 6. Three models A, I, U for vowels /a:/, /i:/ and /u:/ had simplified rectangular shape of the channel with constant height 20 mm. The fourth model A2D had elliptical channel shape. Resulted resonance frequencies were within the known ranges of formant frequencies of the vowels. The resonances of default configurations varied for different boundary positions in relation to measuring microphone in the range of 0.5 %, 3.9 %, 2.1%, 6.7 % for the models A2D, A, I and U, respectively. The resonances of direct and reversed models with the output closed differed in the range of 0.5 % and 1.8 % for A2D and A model, respectively. The measured and computed resonances differed in the range from 3.8 % for A2D to 14.6 % for the model I.
Finite element modelling of sound pressure around the human head during phonation
Švancara, P. ; Tomeček, V. ; Horáček, Jaromír ; Švec, J. G.
The study presents finite element (FE) model of sound propagation through the vocal tract and around the human head during speech production. Similar experimental studies are not easily realisable. The FE model of the acoustic spaces corresponding to the human vocal tract for Czech vowel [a:] and acoustic space around the human head was created from computer tomography (CT) images. Modal and transient analyses (excitation by a short pulse) are used for analysis of resonant characteristics of the FE model. The production of vowel is then simulated using transient analysis of the FE models excited by Liljencrants-Fant’s (LF) glottal signal model. Formant frequencies detected from computed spectra are in good agreement with results of modal analysis and with literature. The results of numerical simulation enable evaluating of the transfer functions between a reference point and any point in the space around the head.
In vivo measurements of air pressure, vocal folds vibration and acoustic characteristics of phonation into a straw and a resonance tube used in vocal exercising.
Radolf, Vojtěch ; Laukkanen, A. M. ; Horáček, Jaromír ; Veselý, Jan ; Liu, D.
The study investigates the differences between three most widely used methods in voice training and therapy: Phonation into a glass resonance tube (1) the outer end in the air, (2) the outer end submerged 2-10 cm below water surface in a bowl (‘water resistance therapy’ with bubbling effect), and (3) phonation into a very thin straw. One female speech trainer served as subject. Acoustic samples, electroglottographic signals and both mean and dynamic airpressures in the mouth cavity were registered for repetitions of [pu:pu], and for phonation into the tubes, while the outer end was randomly shuttered, in order to get an estimate of subglottic pressure. Both phonation threshold and ordinary, most comfortable phonation were recorded.
Experimental investigation of air pressure, acoustic characteristics and vibrations of vocal folds on a complex physical model of phonation in humans.
Horáček, Jaromír ; Radolf, Vojtěch ; Bula, Vítězslav ; Veselý, Jan ; Laukkanen, A. M.
The contribution aims to provide material that can be used in development of more realistic physical as well as theoretical models of voice production. The experimental set-up, methodology and the results of measurement of airflow rate, subglottal, oral and generated acoustic air pressures are presented together with the simultaneously measured flow-induced vibrations of a vocal folds replica, made of soft silicon rubber, and recorded by a high speed camera. The data were measured during a ‘soft’ phonation just above the phonation onset, given by the phonation threshold airflow rate, and during a ‘normal’ phonation for the airflow rate of about three times higher. A model of the human vocal tract in the position for production of vowel [u:] was used and the flow resistance was raised by phonating into a glass resonance tube either in the air or having the other end of the tube submerged under water, and by phonating into a narrow straw. The results for the pressures presented in time and frequency domain are comparable with the physiological ranges and limits measured in humans for ordinary phonation and for production of vocal exercises used in voice therapy.
Effect of the size of piriform sinuses on the voice quality
Vampola, T. ; Horáček, Jaromír
The influence of piriform sinuses (PS) on the resonance and antiresonance characteristics of the vocal tract is investigated. The change in sizes of PS cavities alters the resulting voice quality. Pilot studies reveal that additional formants caused by PS can occur in the frequency range of 3 – 5 kHz, i.e., in the range which is important for the production of the so called singer’s or speaker’s formant. This contribution therefore aims at investigating the influence of the side cavities of the vocal tract in more detail using two computational models of the vocal tract. First, is presented analysis of the influence of the acoustic spaces of PS on the existence of resonances and antiresonances in the spectra of the acoustic signal simulated using a reduced finite element (FE) model of the human vocal tract. Then the full FE model is used for the analysis by using direct numerical simulations of phonation.
Implementation of 1D mathematical model of vocal cavities into TTS synthesizer – preliminary study
Radolf, Vojtěch ; Horák, Petr
Simplified 1D mathematical models of the human vocal tract were modified for using them in Text-To-Speech systems so that they help to simulate emotional speech. The geometry (area function) of the models for all Czech vowels was modified using the inverse task optimization procedure so that the computed formant frequencies match the measured formant frequencies of utterances of professional speaker. Output acoustic pressure signal generated from the models in wav format sounded satisfactorily for all the vowels and fundamental frequencies varied in an octave range from 77 Hz to 156 Hz. Neverthelles more testing procedures are needed to verify reliability and quickness of the model as well as intelligibility of generated utterances especially in formant TTS system and linear predictive TTS system.
Measurement of contact stress in a self-oscillating model of human vocal folds
Horáček, Jaromír ; Bula, Vítězslav ; Veselý, Jan ; Radolf, Vojtěch
The contribution presents in vitro measurement of contact stress in the artificial vocal folds made of a silicon rubber excited by airflow with synchronous registration of the flow induced vocal fold vibrations using a high speed camera, measurement of subglottal dynamic and mean air pressure and the generated acoustic signal. The measured maximum impact stress, maximum glottal opening and sound pressure level are compared with data found in excised larynges as well as with the values numerically simulated by the aeroelastic model of vocal fold self-oscillations.
Unsteady flows in convergent channel with stationary walls
Pořízková, P. ; Kozel, Karel ; Horáček, Jaromír
A current challenging question is a mathematical and physical description of the mechanism for transforming the airflow energy in human vocal tract (convergent channel) into the acoustic energy representing the voice source in humans. Goal of this work is to describe mathematical model of flow in 2D convergent channel which involves attributes of real flow as is “Coanda phenomenon”, vortex convection and diffusion, jet flapping etc. along with lower call on computer time, due to later extension in 3D channel flow.

Národní úložiště šedé literatury : Nalezeno 66 záznamů.   začátekpředchozí21 - 30dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.