National Repository of Grey Literature 23 records found  beginprevious14 - 23  jump to record: Search took 0.01 seconds. 
Modulation of synaptic transmission in the development of painful states
Slepička, Jakub ; Paleček, Jiří (advisor) ; Hejnová, Lucie (referee)
My thesis introduces the topic of nociceptive signalisation and processes involved in the formation and spreading of neuropathic pain. This study focuses on the mechanisms of nociceptive synaptic transmission mechanisms in the level of spinal dorsal horn and its modulation by paclitaxel, a chemotherapeutic drug inducing neuropathic changes. The attention is put especially on the possibility of glial activity participation in paclitaxel side effects. This idea stems from the existing hypothesis of the functional connection between TLR4 and TRPV1 receptor activity. TRPV1 is well known for its participation in chemical, thermal and nociceptive sensory transmission. Minocycline antibiotic is considered as an inhibitor of microglial activation therefore it was used for blocking neuroinflammation. The experimental part is comparing an impact of substances applied to the model of tachyphylaxis used for monitoring of nociceptive transmission changes according to decreasing activity of TRPV1 receptors. Electrophysiological recording of miniature excitatory postsynaptic currents from neurons in the Rexed laminae I. and II. of spinal dorsal horn was used. The results of my measurements show that minocycline is able to suppress acute effects of paclitaxel application in vitro if the spinal slice is incubated...
The role of nociceptive synaptic transmission modulation at the spinal cord level in different pain states
Adámek, Pavel ; Paleček, Jiří (advisor) ; Vaculín, Šimon (referee) ; Vlachová, Viktorie (referee)
Pain is a common symptom of many clinical syndromes and diseases. In particular, the treatment of neuropathic pain represents a serious public health issue because currently available analgesia is ineffective in many cases or it has adverse effects. Treatment of pain-related suffering requires knowledge of how pain signals are initially generated and subsequently transmitted by the nervous system. A nociceptive system plays a key role in this process of encoding and transmission of pain signals. Modulation of the nociceptive synaptic transmission in the spinal cord dorsal horn represents an important mechanism in the development and maintenance of different pathological pain states. This doctoral thesis has aimed to investigate and clarify some of the mechanisms involved in the modulation of the spinal nociceptive processing in different pain states. The main attention was paid to study the following issues: (I.) Which is the role of Transient Receptor Potential Vanilloid type 1 channels (TRPV1), Toll-Like Receptors 4 (TLR4), and phosphatidylinositol 3-kinase (PI3K) in the development of neuropathic pain induced by paclitaxel (PAC) chemotherapy in acute in vitro, and subchronic in vivo murine model of PAC-induced peripheral neuropathy (PIPN)? (II.) How is affected spinal inhibitory synaptic control...
Modulation of nociceptive synaptic transmission
Nerandžič, Vladimír ; Paleček, Jiří (advisor) ; Krůšek, Jan (referee) ; Hejnová, Lucie (referee)
Modulation of synaptic transmission in the spinal cord dorsal horn plays an important role in development and maintenance of pathological pain states. The indisputable part of this modulation is conducted via activity of the transient receptor potential cation channel subfamily V member 1 (TRPV1) and the cannabinoid receptor 1 (CB1), expressed on presynaptic endings of primary afferents in the superficial spinal cord dorsal horn. Under physiological conditions, activation of TRPV1 receptors is pronociceptive while CB1 receptor activation leads to attenuation of nociceptive signalling. However, both receptors share also one endogenous agonist anandamide (AEA) that may be produced from N-arachidonoyl phosphatidylethanolamine (20:4-NAPE). Main objective of this thesis focuses on the effect of 20:4-NAPE on nociceptive synaptic transmission in spinal cord slices under naïve and inflammatory conditions and consequent on the possible interaction of TRPV1 and CB1 receptors. First, 20:4-NAPE application induced significant release of anandamide from spinal cord slices under in vitro conditions. Next, patch- clamp recordings of excitatory postsynaptic currents (mEPSC and sEPSC) from superficial dorsal horn (DH) neurons in acute spinal cord slices were used. 20:4-NAPE application under the physiological...
The role of spinal TRPV1 receptors in nociceptive signalling and the modulatory effect of chemokine CCL2 and µ-opioid receptor agonists
Šulcová, Dominika ; Paleček, Jiří (advisor) ; Krůšek, Jan (referee)
The first nociceptive synapse in the spinal cord dorsal horn represents an important site, where nociceptive synaptic transmission can be modulated under pathological conditions. One of the modulatory mechanism involves activation of the transient receptor potential vanilloid 1 (TRPV1) that is expressed on central terminals of primary nociceptive neurons, where it regulates release of neurotransmitters and neuromodulators. Previous studies suggested that changes in TRPV1 activity may be related to effects of chemokine CCL2 (C-C motif ligand 2) and may be also involved in synaptic transmission modulation after µ-opioid receptors (MOP-R) activation. Because CCL2 receptors CCR2 often co-localize with TRPV1 and MOP-R, the goal of this work was to studypossible interactions of these receptors on the pre-synaptic endings of primaryafferents in the spinal cord dorsal horn and their role in nociceptive signalling under pathological conditions. The presented thesis focused on the effect of CCL2 during peripheral neuropathy and its interference with µ-opioid receptor activation. To studysynaptic transmission at the spinal cord level, patch-clamp recordings of excitatory post-synaptic currents (EPSC) in superficial spinal cord dorsal horn neurons in acute lumbar spinal cord slices from rats was used....
The role of TLR-4 receptors for modulation of nociceptive signalling.
Slepička, Jakub ; Paleček, Jiří (advisor) ; Zímová, Lucie (referee)
The ability to feel pain is subjective, but a crucial factor allowing us to maintain life with minimal body impairment. However, if the pain crosses the physiological signalling function it becomes a life restrictive symptom that is often difficult to treat. Development of pain and its change into pathological chronic symptom and the role of different molecular and cellular mechanisms in this process are best to be studied during its development, nociception. In this work the basic characteristics of nociceptive signalling, with focus on neuropathy, a state originating from nervous system damage is given. The exact mechanisms of neuropathic pain development are not known, which is one of the reasons why these painful states are difficult to treat. Neuroinflammation was lately shown to play an important part in the neuropathy development. In this context a review of Toll-like receptors is given. These receptors have a fundamental role in the innate immunity and their role in the nervous system was documented recently. In this review a focus is given on TLR-4 subtype that was shown to be involved in a modulation of nociceptive signalling. The basic features of this receptor and information about its involvement in neuropathic pain development are given. Studying the role of TLR-4 in different models...
The role of TRPV1 receptors in chemokine CCL2 induced modulation of nociceptive synaptic transmission at spinal cord level
Adámek, Pavel ; Paleček, Jiří (advisor) ; Krůšek, Jan (referee)
Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn is a significant mechanism in the development and maintenance of different pathological pain states. Accumulating evidence indicates that the TRPV1 (transient receptor potential vanilloid 1) receptor and chemokine CCL2 (C-C motif ligand 2) may play a critical role in this process. The aim of this diploma thesis was to investigate the CCL2 induced modulation of nociceptive synaptic transmission in the dorsal horn of spinal cord and the role of the TRPV1 receptors. To investigate this aim patch-clamp recordings of spontaneous and miniature excitatory postsynaptic currents (sEPSC, mEPSC) from superficial dorsal horn neurons in acute rat lumbar spinal cord slices were used. After acute application of CCL2 on the slice preparation from naïve animals, a frequency increase of both sEPSC and mEPSC was present. This CCL2 induced increase in both sEPSC and mEPSC frequency was prevented by the TRPV1 receptor antagonist SB366791 application. No changes were observed in the amplitudes of sEPSC or mEPSC after application of the CCL2, SB366791, or co-application of CCL2 and SB366791. This suggests that the observed changes were mediated predominantly by presynaptic mechanisms. The preliminary results indicate that after chronic constriction...
Mechanisms of activation and modulation of vanilloid TRP channels
Boukalová, Štěpána ; Vlachová, Viktorie (advisor) ; Hock, Miroslav (referee) ; Zemková, Hana (referee)
Štěpána Boukalová Mechanisms of activation and modulation of vanilloid TRP channels TRPV1 and TRPV3 are thermosensitive ion channels from the vanilloid subfamily of TRP receptors. TRPV1, which is primarily expressed in nociceptive sensory neurons, is an important transducer of painful stimuli and is also involved in the detection of noxious heat. TRPV3 is expressed mainly in the skin where it regulates proliferation and differentiation of keratinocytes. Similarly to voltage-dependent potassium (Kv) channels, TRP receptors are comprised of four subunits, each with six transmembrane segments (S1-S6). Using mutational approach, we tried to elucidate the role of S1 in TRPV1 functioning. Our results indicate that the extracellular portion of S1 plays a crucial role in TRPV1 gating. TRPV1 channels with a conservative mutation of positively charged residue in this region (R455K substitution) were overactive. However, they were neither activated nor potentiated by low pH; on the contrary, protons stabilized the closed conformation of this mutant channel. Very similar phenotypic properties were found in other TRPV1 mutants with substitution in S4/S5-S5 region and in the pore helix. In Kv channels, extracelular portion of S1 forms a small contact surface with the pore helix, which allows efficient transmission of...
Modulation of synaptic transmission, studies on spinal cord slices in vitro
Mrózková, Petra ; Paleček, Jiří (advisor) ; Krůšek, Jan (referee)
Modulation of a synaptic transmission in the spinal cord dorsal horn plays a key role in nociceptive signalling, especially in states of pathological pain. The goal of this study was to develop a method for calcium imaging in spinal cord slices in vitro. This method allowed us to record changes of intracellular free calcium ions concentration (iCa2+ ), that are a major mediator of neuronal plasticity. In this work, we have focused on application of this method in a conventional fluorescence microscope and on the role of different neuromodulators of synaptic activity. Changes of iCa2+ induced by dorsal root electrical stimulation were recorded altogether in 744 dorsal horn (lamina I and II) neurons. In the first series of experiments, stimulation protocols activating preferentially A and A + C dorsal root fibers were used and long-term stability of the calcium responses was verified. The dorsal root stimulation induced in the neurons fast and delayed type of calcium response. Application of AMPA and NMDA receptors antagonists, CNQX (50μM) and MK801 (45μM), reduced the calcium response amplitude and confirmed the importance of glutamate receptors in synaptic activation. In several experiments the effect of capsaicin a TRPV1 receptors agonist, application was tested. Application of even low...
Pathological pain states, the role of synaptic modulation at spinal cord level
Nerandžič, Vladimír ; Paleček, Jiří (advisor) ; Krůšek, Jan (referee)
(English) Modulation of synaptic transmission in dorsal horn of spinal cord plays a key role in nociceptive signalling. Recent studies have indicated a great importance of presynaptic TRPV1 receptors (transient receptor potential vanilloid) in spinal cord. These receptors act as molecular integrator of nociceptive stimulation on periphery. The way of their activation and the effect on modulation of the synaptic transmission are not clarified yet. Previous studies demonstrated the influence of many inflammatory mediators and cytokins on TRPV1 receptors. The aim of our research was to show changes in activation of presynaptic TRPV1 receptors in the spinal cord following the application of endogenous agonist N-oleoyl dopamine (OLDA) in a model of peripheral neuropathy, after incubation with cytokine TNFα and to show the effect of precursor of anandamide N-acylphosphatidylethanolamine (NAPE). In our experiments, we have recorded miniature excitatory postsynaptic currents (mEPSC) from neurons of acute spinal cord slices by the patch-clamp method. The first series of experiments tested sensitivity to application of the endogenous agonist OLDA 5 days after evoking peripheral neuropathy. The frequency of mEPSC increased significantly - to 250 % of base level after applying a low concentration of OLDA (0,2...
Structural and Functional Study on Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin Receptor (TRPA1) Channels
SAMAD, Abdul
Investigations of structural and functional relationships of rat transient receptor potential cation channel, subfamily V, member 1 (TRPV1), also known as the capsaicin receptor, and human transient receptor potential cation channel, subfamily A, member 1, also known as TRPA1, are presented. Capsaicin induced Ca2+ -dependent desensitization of rat TRPV1 channel is studied and lead to the identification of key amino acid residues in the C- terminal domain of TRPV1 interacting with the membrane phospholipid PIP2 and an intradomain interaction that controls the open and desensitized state of the TRPV1 channel. Further the molecular basis of agonist AITC- and voltage-dependent gating on TRPA1 is explained. Hereby, residue P949 located near the center of the sixth transmembrane spanning helix (S6) is structurally required for normal functioning of the receptor and the distal bi-glycine G958XXXG962 motif controls its activation/deactivation properties. Furthermore, the gating region is extended towards the cytoplasmic part of the channel, putatively located near the inner mouth of the channel pore. A following series of experiments lead to the identification of a limited number of residues that appear important for allosteric regulation of the channel by chemical and voltage stimuli (K969, R975, K989, K1009, K1046, K1071, K1092 and K1099). In addition, three charge-neutralizing `gain-of- function{\crq} mutants (R975A, K988A, and K989A) which exhibited higher sensitivity to depolarizing voltages were characterized, indicating that these residues are directly involved in voltage-dependent modulation of TRPA1.

National Repository of Grey Literature : 23 records found   beginprevious14 - 23  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.