National Repository of Grey Literature 31 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Numerical analysis of approximation of nonpolygonal domains for discontinuous Galerkin method
Klouda, Filip ; Dolejší, Vít (advisor)
Title: Numerical analysis of approximation of nonpolygonal domains for discon- tinuous Galerkin method Author: Filip Klouda Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vít Dolejší, Ph.D., DSc., KNM MFF UK Abstract: In this work we use the discontinuous Galerkin finite element method for the semidiscretization of a nonlinear nonstationary convection-diffusion pro- blem defined on a nonpolygonal two-dimensional domain. Using so called appro- ximating curved elements we define a piecewise polynomial approximation of the boundary of the domain and a space on which we search for a solution. We study the convergence of the method considering a symmetric as well as nonsymmetric discretization of diffusion terms and with the interior and boundary penalty. The obtained results allow us to derive an error estimate for the Discontinuous Galer- kin method employing the approximating curved elements. This estimate depends on the order of the approximation of the solution and also on the order of the approximation of the boundary. We describe one possibility of the construction of the approximating curved elements with the aid of a polynomial mapping given by an interpolation of points on the boundary. We present numerical experiments. Keywords: nonlinear convection-diffusion equation, discontinuous...
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equati- ons for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi- implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numeri- cal scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. 1
The Gibbs phenomenon in the discontinuous Galerkin method
Stará, Lenka ; Kučera, Václav (advisor) ; Sváček, Petr (referee)
The solution of the Burgers' equation computed by the standard finite element method is degraded by oscillations, which are the manifestation of the Gibbs phenomenon. In this work we study the following numerical me- thods: Discontinuous Galerkin method, stable low order schemes and the flux corrected technique method in order to prevent the undesired Gibbs phenomenon. The focus is on the reduction of severe overshoots and under- shoots and the preservation of the smoothness of the solution. We consider a simple 1D problem on the interval (0, 1) with different initial conditions to demonstrate the properties of the presented methods. The numerical results of individual methods are provided. 1
Numerical simulation of turbulent flow
Bosch Calvo, Francisco Javier ; Dolejší, Vít (advisor) ; Fürst, Jiří (referee)
A look into an implementation of turbulence model into the ADGFEM code for viscous flow. Discretization, theory background and development of the method will be carried during this thesis. Also some numerical examples of the application of the code will be provided. 1
Numerical solution of the shallow water equations
Šerý, David ; Dolejší, Vít (advisor) ; Felcman, Jiří (referee)
The thesis deals with the numerical solution of partial differential equati- ons describing the flow of the so-called shallow water neglecting the flow in the vertical direction. These equations are of hyperbolical type of the first or- der with a reactive term representing the bottom topology. We discretize the resulting system of equations by the implicit space-time discontinuous Ga- lerkin method (STDGM). In the literature, the explicit techniques are used most of the time. The implicit approach is suitable especially for adaptive methods, because it allows the usage of different meshes for different time niveaus. In the thesis we derive the corresponding method and an adaptive algorithm. Finally, we present usage of the method in several examples. 1
Discontinuous Galerkin method for the solution of boundary-value problems in non-smooth domains
Bartoš, Ondřej ; Feistauer, Miloslav (advisor) ; Dolejší, Vít (referee)
This thesis is concerned with the analysis of the finite element method and the discontinuous Galerkin method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity, if the weak solution is nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary, the nonlinearity only slows down the convergence of the function values but not the convergence of the gradient. The same analysis is carried out for approximate solutions obtained with numerical integration. The theoretical results are verified by numerical experiments. 1
Adaptive space-time discontinuous Galerkin method for the solution of non-stationary problems
Vu Pham, Quynh Lan ; Dolejší, Vít (advisor) ; Feistauer, Miloslav (referee)
This thesis studies the numerical solution of non-linear convection-diffusion problems using the space- time discontinuous Galerkin method, which perfectly suits the space as well as time local adaptation. We aim to develop a posteriori error estimates reflecting the spatial, temporal, and algebraic errors. These estimates are based on the measurement of the residuals in dual norms. We derive these estimates and numerically verify their properties. Finally, we derive an adaptive algorithm and apply it to the numerical simulation of non-stationary viscous compressible flows. Powered by TCPDF (www.tcpdf.org)
Numerical solution of nonlinear transport problems
Bezchlebová, Eva ; Feistauer, Miloslav (advisor) ; Vlasák, Miloslav (referee)
Práce je zaměřená na numerickou simulaci dvoufázového proudění. Je studován matematický model a numerická aproximace toku dvou nemísitelných nestlačitelných tekutin. Rozhraní mezi tekutinami je popsáno pomocí pomocí tzv. level set metody. Představena je diskretizace problému v prostoru a v čase. Metoda konečných prvk· se zpětnou Eulerovou metodou je aplikována na Navierovy-Stokesovy rovnice a časoprostorová nespojitá Galerkinova metoda je použita k řešení transportního problému. D·raz je kladen na analýzu chyby nespojité Galerkinovy metody přímek a časoprostorové nespojité Galerkinovy metody pro transportní problém. Jsou prezentovány numerické výsledky. 1
Numerical analysis of approximation of nonpolygonal domains for discontinuous Galerkin method
Klouda, Filip ; Dolejší, Vít (advisor)
Title: Numerical analysis of approximation of nonpolygonal domains for discon- tinuous Galerkin method Author: Filip Klouda Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Vít Dolejší, Ph.D., DSc., KNM MFF UK Abstract: In this work we use the discontinuous Galerkin finite element method for the semidiscretization of a nonlinear nonstationary convection-diffusion pro- blem defined on a nonpolygonal two-dimensional domain. Using so called appro- ximating curved elements we define a piecewise polynomial approximation of the boundary of the domain and a space on which we search for a solution. We study the convergence of the method considering a symmetric as well as nonsymmetric discretization of diffusion terms and with the interior and boundary penalty. The obtained results allow us to derive an error estimate for the Discontinuous Galer- kin method employing the approximating curved elements. This estimate depends on the order of the approximation of the solution and also on the order of the approximation of the boundary. We describe one possibility of the construction of the approximating curved elements with the aid of a polynomial mapping given by an interpolation of points on the boundary. We present numerical experiments. Keywords: nonlinear convection-diffusion equation, discontinuous...
Numerical simulation of transonic flow of wet steam
Nettl, Tomáš ; Dolejší, Vít (advisor) ; Feistauer, Miloslav (referee)
This thesis is concerned on the simulation of wet steam flow using discontinuous Galerkin method. Wet steam flow equations consist of Naviere-Stokes equations for compressible flow and Hill's equations for condensation of water vapor. The first part of this thesis describes the mathematical formulation of wet steam model and the derivation of Hill's equations. The model equations are discretized with the aid of discontinuous Galerkin method and backward difference formula which leads to implicit scheme represented by nonlinear algebraic system. This system is solved using Newton-like method. The derived scheme was implemented in program ADGFEM which is used for solving non-stationary convective-diffusive problems. The numerical results are presented in the last part of this thesis. 1

National Repository of Grey Literature : 31 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.