National Repository of Grey Literature 85 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Preparation and optimization of electrospun materials suitable as electricity generators
Pokorná, Romana ; Holcman, Vladimír (referee) ; Tofel, Pavel (advisor)
This master's thesis is focused on energy harvesting and is divided into two parts: theoretical and practical part. The theoretical part of the thesis contains the dielectric parameters, the meaning of the piezoelectric and triboelectric effect and the principles of electric energy gain in energy havesting. The last chapter of the theoretical part is devoted to various electrospun materials suitable for energy harvesting. The practical part of the work deals with nanofibers as an energy generator and describes their dielectric parameters. In this part the relative permittivity and loss factor of selected types of nanofibers are measured. Also the triboelectric nanogenerator is made and it's properties are measured.
The Effect of Nanofibres Dispergation on the Properties of Sintered Ceramic Body
Němec, Tomáš ; Keršner, Štěpán (referee) ; Sokolář, Radomír (advisor)
The main goal of this diploma´s thesis is to review final qualities of traditional porcelain body with using nanofibers. The theoretical part of the thesis summarizes the current knowledge of the research on ceramic composite with using nanofibers. The vast majority of these researches is engaged by reinforcing technical ceramics, on the other hand area of traditional porcelain is still unexplored area. Besides that there are shown technological ways of the production and dispersion of the most important types of nanofibers. In the practical part of this thesis is experimentaly defined the most effecient way of homogenization procedure and the most effecient dose of nanofibers for pure kaolin body. In conclusion are compared the resulting properties of traditional porcelain body with using Al2O3 and SiO2 nanofibers.
Preparation and application of combined functionalized nanomaterials with antimicrobial effect in food and cosmetics
Vojteková, Vanesa ; Skoumalová, Petra (referee) ; Márová, Ivana (advisor)
The presented diploma thesis is focused on the preparation of combined nanomaterials that were functionalized with an antimicrobial ingredient. Liposomes were prepared without the addition of polyhydroxybutyrate but also with its addition. The nanofibers were obtained from gelatin solution by electrospinning. Thymol, eugenol, curcumin and vitamin E were used for functionalization. In the theoretical part, individual bioactive components, materials for the preparation of nanoparticles and nanofibers as well as methods of synthesis of these materials were characterized. The applications of the prepared nanoparticles as preservatives in the food industry and applications of nanofibers in wound healing and in the cosmetics industry have also been described. In the experimental part, the antioxidant activity of the active substances was determined. Two types of liposomes were prepared and evaluated for size, stability and encapsulation efficiency. Subsequently, the release rate of active substances from the prepared liposomes was monitored. Nanofibers with combinations of substances that were encapsulated in liposomes were prepared by electrospinning. The antimicrobial activity of the active ingredients, nanofibers and nanomaterials was monitored on three strains of microorganisms, namely Micrococcus luteus, Staphylococcus epidermidis and Escherichia coli. The individual substances in pure as well as encapsulated form were combined with each other to observe the possible synergistic effect. The prepared nanoparticles and nanofibers with antimicrobial components were tested for cytotoxicity on human keratinocytes. The nanofibers were also subjected to a scratch test, which simulates the wound healing process.
Development and preparation of antimcrobial nanostructure biomaterials
Drabíková, Nela ; Skoumalová, Petra (referee) ; Márová, Ivana (advisor)
The presented diploma thesis deals with the optimalisation of preparation and the preparation of combined nanostructured antimicrobial biomaterials itself. In the theoretical part, a review focused on used materials and consequently preparation of nanoparticles and nanofibers was elaborated. Furthermore, the used antimicrobial substances – curcumin and ampicillin, and the principle of cytotoxicity assay were described.In practical part the optimalisation process is described. Furthermore the safety of prepared materials and used antimicrobial substances on HaCaT cell line was tested, in order to confirm their possible further use in cosmetic and pharmaceutical industry. Great part of the thesis deals with evaluation of the antimicrobial activity of used substances and prepared combined nanomaterials on multiple microorganisms from grampositive bacteria, gramnegative bacteria and yeasts. Also the release speed of antimicrobial substances from prepared nanomaterials was determined by spectrophotometer. The amount of released ampicillin from prepared nanomaterials was determined by liquid chromatography.
Development of PVDF nanofibers sensor
Klásek, Matyáš ; Tofel, Pavel (referee) ; Hadaš, Zdeněk (advisor)
This diploma thesis deals with the feasibility of using PVDF nanofibers as an active sensor layer generating electrical signal. PVDF and related electromechanical effects are described. A research study is conducted regarding existing PVDF nanofiber applications and based on it, an event sensor design utilizing triboelectric effect and electrostatic induction is proposed. The electrical response of the layers is experimentally investigated and a pulse detection algorithm is conceived and implemented. Finally, a way of integrating the sensor into a rail track is proposed.
Air filtration
Krajčová, Kateřina ; Uher, Pavel (referee) ; Rubinová, Olga (advisor)
The diploma thesis describes the design of air conditioning equipment of materni-ty hospital and experimental measurement nanofilters and their subsequent comparison with conventional air filters. The work consists of three parts. The first part describes the types of filters. Nanofilters and nanofiber materials are de-scribed in detail here. In the second part is the topic of air filtration applied to the maternity hospital. Two variants of air conditioning and cooling are designed for the 3rd floor of this building. The third experimental part deals with antibacterial effects of thr silver fiber nanofilter and its comparison with commonly used filters. It also deals with the pressure drop on the filters at different air speeds.
Preparation of nanoparticles and nanofibers with antimicrobial components
Sosková, Simona ; Veselá, Mária (referee) ; Skoumalová, Petra (advisor)
The presented diploma thesis is focused on the preparation of new materials with antimicrobial effect. Liposomes and nanofibers from polyhydroxybutyrate containing clotrimazole and natural extracts with good antifungal and antioxidant effects were prepared. The theoretical part contains examples and short description of using nanoparticles and nanofibers in cosmetics and medicine and the description of plants which have positive and potential antimycotic effects. Moreover, methods for particles and fibers characterisation were shortly described. In the experimental part, natural water and lipid extracts were prepared and spectrophotometrically characterised for the content of polyphenols, flavonoids and the antioxidant activity. Liposomes and liposomes containtng PHB were prepared from selected extracts and the encapsulation effectivity, shortterm and longterm stability via determination of polyphenols were determined. Prepared particles were characterized with DLS method (size) and zeta- potential (stability). PHB nanofibers functionalised with selected lipid extracts and clotrimazole were prepared via electrospinning and forcespinning, and examined via FLIM and FTIR-ATR methods and spectrophotometry was used for antioxidant activity and release of active substances determination. Antifungal properties of prepared particles, extracts and fibers using the test system Candida glabrata were studied. Finally, cytotoxicity of selected samples was tested with MTT assay using human keratinocytes.
Preparation of organic fibers with the addition of algae extracts
Tuhrinská, Terézia ; Skoumalová, Petra (referee) ; Němcová, Andrea (advisor)
The presented bachelor thesis is focused on the preparation and characterization of organic fibers with an admixture of pre-prepared extracts of microalgae and cyanobacteria containing valuable active compounds. The theoretical part describes selected metabolites of microalgae and cyanobacteria, methods of their analysis, the issue of encapsulation and incorporation of active substances into nanofibers and presents some methods of their preparation. In the experimental part of this thesis, selected strains from the CCALA collection were first cultured. Subsequently, aqueous, ethanol and hexane extracts of biomass from cultured and commercial microalgae and cyanobacteria were prepared. The prepared extracts were spectrophotometrically evaluated in terms of the concentration of chlorophylls, carotenoids, antioxidants, polyphenols, and total proteins present. In addition, 96 % ethanol extracts were subjected to more accurate analysis of chlorophylls and carotenoids by HPLC. The highest antioxidant activity was observed for aqueous extracts. Gelatin nanofibers containing selected extracts were formed by electrospinning method. The formed fibers were examined afterwards to identify a mass fraction of incorporated microalgal and cyanobacterial substances. The fibers were further tested for antioxidant activity with the TEAC assay. The most pronounced antioxidant effect was detected for the fiber with incorporated aqueous extract of the cyanobacterium Arthrospira maxima. Finally, the fibers were tested for their safety in contact with human cells. The amount of fibers used did not show any cytotoxic effect on human keratinocytes and the tested materials can thus be considered safe for application in cosmetics.
Nanotechnology utilization in nuclear industry and research
Skalička, Jiří ; Štefánik, Milan (referee) ; Katovský, Karel (advisor)
This thesis introduces reader to current knowledge of nanomaterials and their usage. It summarises production methods and usage of different materials in nuclear power plants, nuclear research and nuclear medicine. Theoretical part of this thesis is dedicated to possible usage of carbon nanotubes for neutron beam collimation and guides. In experimental part different materials were tested in measuring box connected to horizontal radial channel of VR-1 nuclear reactor and their influence on neutron flux was measured. Tested samples were non-oriented carbon nanotubes, carbon nanofibers, alumina nanowires, oriented carbon nanotubes with several angles of rotation and these samples were compared with results of graphite.
Electrical characterization of flexible nanofiber piezoelectric materials
Pokorná, Romana ; Holcman, Vladimír (referee) ; Tofel, Pavel (advisor)
This bacherol thesis is focused on piezoelectric nanofibrous materials. The first part describes the formation, use and possible aplications of nanofibers. It further analyze the principle of piezoelectric effect. It is a conversion of mechanical energy into electric energy and conversely. The second part is focused on design of experimental workplace for measurement of functional material properties. The last section of the thesis is dedicated to the electrical characterization of PVDF nanofibers and to the measurement of the piezoelectric charge constant.

National Repository of Grey Literature : 85 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.