National Repository of Grey Literature 45 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Galvanic plating of magnesium alloy with Ni-P bond coat
Zahálka, Martin ; Kosár, Petr (referee) ; Wasserbauer, Jaromír (advisor)
Cílem této diplomové práce jse najít nejnižší možnou tloušťku nikl-fosforového povlaku, který může být galvanicky pokoven mědí bez defektů na horčíkové slitině, nikl-fosforového nebo měděného povlaku. V teoretické části jsou shrnuty poznatky o hořčíkových slitinách a jejich korozi. Navíc se teoreticá část zaměřuje na popis procesu bezproudého niklování a elektrochemického pokovování mědí a jejich porovnání. Na konci teoretické části je shrnut současný výzkum o elektrochemickém pokovování hořčíkových slitin. V experimentální části byl popsán proces přípravy povlaků Ni-P a Cu na horčíkové slitině AZ91. Na jedné vrstvě a dvojité vrstvě Ni-P povlaku byla provedena elektrodepozice mědi. Navíc byl diskutován vliv předůpravy před samotnou elektrodepozicí mědi. Za účelem zjištění korozních vlastností vzorků byl vykonán potenciodynamický test. Následně byly připraveny metalografické výbrusy jednotlivých vzorků a pomocí světelného a rastrovacího elektronového mikroskopu byla provedena charakterizace. Na konec bylo zjištěno prvkové složení jednotlivých povlaků pomocí EDX analýzy.
Evaluation of corrosion properties of biodegradable ZE41 magnesium alloy
Honč, Jiří ; Minda, Jozef (referee) ; Tkacz, Jakub (advisor)
This thesis deals with evaluation of corrosion properties of biodegradable magnesium alloy ZE41. Corrosion characteristics of ZE41 wrought magnesium alloy specimens with polished and grinded surface were examined by electrochemical methods. 0,1M NaCl solution was used as corrosive environment. Short-term tests were performed using linear polarization method, by which the corrosion potential, corrosion current density and corrosion rate was determined. Long-term evolution of corrosion behavior in terms of polarization resistance was studied by electrochemical impedance spectroscopy (EIS) during 168 hours. Also, the corrosion products were characterized by scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS). Based on the results, the influence of phase composition and surface treatment on corrosion characteristics was discussed.
Fatigue Behaviour of AZ31 and AZ61 Magnesium Alloys
Gejdoš, Pavel ; Lukáč, Pavel (referee) ; Kohout, Jan (referee) ; Podrábský, Tomáš (advisor)
This doctoral thesis deals with the fatigue behaviour of AZ31 and AZ61 magnesium alloy casted by advanced methods of casting squeeze casting. Based on the regression functions and measured fatigue data were determined fatigue characteristics of these alloys. The work also extends into the area of fatigue cracks in the AZ31 alloy. Were measured fatigue crack propagation rate on modified cylindrical specimens. The paper also outlines the possibilities for describing the fatigue behaviour of AZ61 alloy in extremely low-cycle fatigue.
Evaluation of Corrosion on Selected Magnesium Alloys
Pořický, Vladislav ; Tulka,, Jaromír (referee) ; Pacal, Bohumil (advisor)
This master´s thesis is focused on classification of corrosion resistivity magnesium alloy type AZ91 in environment of salt vapour testing in corrosion chambers. For tests were used samples of magnesium alloy manufactured by three different methods of casting: cast-iron mold, die vacuum casting, die casting without vacuum and method of die casting with additional pressure (squeeze casting). In this work was accomplished metallographic evaluation of corrosion attack and detailed analysis of corrosion products. Conclusions of exposits tests are assembled of analysis of influence of corrosion environment on structure of alloy. On the basis of these conclusions of corrosion tests were evaluated influences of corrosion speed [mm/year] on time [hours] for individual states of magnesium alloy.
Evaluation of corrosion properties of biodegradable ZE41 magnesium alloy in simulated body fluid
Handlíř, Tadeáš ; Minda, Jozef (referee) ; Tkacz, Jakub (advisor)
The bachelor thesis is focused on the evaluation of the effect of processing of biodegradable magnesium alloy ZE41 on its corrosion properties. The corrosion properties of ZE41 wrought magnesium alloy specimens with polished and ground surface were evaluated based on the results of the electrochemical characteristics that took place in the simulated body fluid. Short-term tests were performed using linear polarization method, by which the corrosion potential, corrosion current density and corrosion rate was determined. Long-term evolution of corrosion behavior in terms of polarization resistance was studied by electrochemical impedance spectroscopy (EIS) during 168 hours. Also, the corrosion products were studied by scanning electron microscope (SEM). Based on the results, the influence of surface treatment and phase composition on corrosion characteristics was evaluated.
FATIGUE CHARACTERISTICS OF MODIFIED MAGNESIUM ALLOYS AFTER CORROSION DEGRADATION
Němcová, Aneta ; Očenášek, Vladivoj (referee) ; Hadzima, Branislav (referee) ; Pacal, Bohumil (advisor)
This doctoral thesis deals with the determination of the influence of plasma electrolytic oxidation (PEO) on fatigue behaviour of extruded AZ61 magnesium alloy in air and in the 3.5% NaCl solution. The coatings were formed in the silicate-phosphate electrolyte under pulsed current conditions at a frequency of 50 Hz. The influence of current density on coating formation was examined under current densities of 70, 130 and 200 mA cm-2 for different durations up to a maximum of 1800 s. 8 g dm-3 of KF were added to the electrolyte to study the influence of fluoride ions in plasma electrolytic oxidation. It is shown that fluoride ions inhibit localised oxidation in the initial stage of the process, associated with the secondary particles based on Al–Mn. The presence of fluoride also modified the sparking characteristics, decreased the rate of coating growth and changed the morphologies of the coatings. The influence of fluoride on the coating hardness, and the corrosion resistance of the alloy during exposure to salt spray, was negligible. Based on previous optimised PEO conditions, coatings formed under a current density of 130 mA cm-2 for 300 s in the electrolyte containing KF were chosen for fatigue testing. The high-cycle fatigue tests were carried out on cylindrical samples under a force controlled sinusoidal tension-tension cycle with asymmetry parameter R=0. The experimental data were fitted with Kohout & Věchet function. The fatigue limit of uncoated alloy in air for 107 cycles was determined at 145.4 MPa and the combination of PEO coating with chloride ions caused a reduction of ~55 %. Attention was paid to the fatigue crack initiation in different conditions of cyclic loading. The fracture surfaces underwent detailed fractography analysis including secondary crack observation on the gauge length. The contribution of Al–Mn particles were confirmed on the uncoated alloy in air and the presence of chloride ions were observed as another influential contributor to local corrosion attack. The cyclic loading caused spalling of the outer layer, and the multiple initiation was observed on PEO coated alloy, caused by cracks in the coating and stress transferring to the alloy.
Development of WAAM process parameters for thin-walled components made of magnesium alloy AZ61
Šváb, Čeněk ; Němeček, Stanislav (referee) ; Slavíček, Jakub (advisor)
The thesis deals with the development of WAAM (Wire Arc Additive Manufacturing) process parameters for thin-walled parts made of magnesium alloy AZ61. The aim of the thesis is to find suitable process parameters and describe their influences on the welding process. To achieve this goal, these parameters were experimentally tested. It was found that the parameter of boost phase current and the duration of its application have the highest influence on the weld geometry. The stability of the welding process was then influenced by the electrode feed rate during the boost and burn phases. Based on these results, a final set of parameters was created, which successfully welded a thin-walled part composed of 50 layers and reaching a height of 130 mm.
Evaluation of the effect of chelating agents on the properties of phosphate coatings on AZ31 magnesium alloy prepared by hydrothermal method
Molva, Vojtěch ; Doskočil, Leoš (referee) ; Buchtík, Martin (advisor)
The aim of this bachelor thesis was to evaluate the influence of chelating agents on the properties of CaP coatings deposited on the AZ31 magnesium alloy by hydrothermal method. The theoretical part deals with magnesium and its alloys useful not only in biomedicine. Subsequently, the possibilities of surface treatments in the field of biomedical applications are described, with a focus on calcium phosphate (CaP) coatings. The theoretical part further discusses these coatings and the influence of selected chelating agents on the formation of CaP coatings. The theoretical part is concluded with a review of the experiments already carried out for the preparation of CaP coatings on Mg alloys. The experimental part includes the preparation and analysis of the protective Mg(OH)2 layer necessary for the deposition of CaP coatings. Within the experimental part, the influence of chelating agents (Chelaton III, citric acid, magnesium gluconate hydrate) at concentrations of 5, 50, and 500 mM at different pH of the reaction mixture on the structure, morphology, composition, and quality of the prepared CaP coatings was studied. The morphology, structure, and composition of the deposited coatings were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Based on these analyses, an assessment of the quality of the coatings was performed. In terms of coating quality, the coating prepared with the addition of 50 mM of Chelaton III at pH 7 and with the addition of 5 mM of magnesium gluconate hydrate at pH 5 appeared to be the best. The corrosion resistance was investigated by potentiodynamic tests in 0.15M NaCl, always with the sample from each batch that showed the best quality. The corrosion potential (Ecorr) and current corrosion density (icorr) values were determined from the polarization curves using the Tafel extrapolation method. Based on the measurements made, the most corrosion-resistant coated sample was the one with the addition of 5 mM magnesium gluconate hydrate at pH 5.
Investigation of deformation mechanisms in Mg-Gd alloys
Szabóová, Andrea ; Mathis, Kristián (advisor) ; Drozdenko, Daria (referee)
Title: Investigation of deformation mechanisms in Mg-Gd alloys Author: Andrea Szabóová Department: Department of Physics of Materials Supervisor: doc. RNDr. Kristián Mathis, DrSc. Abstract: In the present work, the deformation behavior of magnesium-gadolinium binary alloys was investigated. Dependence on the concentration of Gd and deformation temperatures was studied. Extruded samples had relatively strong initial texture. Compression tests were done at room temperature and 200řC. Simultaneously with deformation acoustic emission was recorded. Data from acoustic emission was analyzed with advanced statistical methods. Results of the combination of these two experimental methods indicated that at the beginning of the deformation twinning is the dominant mechanism. In the following stage of plastic deformation non-basal slip systems became the governing deformation mechanism. With higher content of Gd the size of twins decreases as a result of the decreased mobility of twin boundaries caused by solute atoms. At higher temperatures twinning activity was increasing. In addition, results were confirmed by optical light and scanning electron microscopy. Keywords: magnesium alloy, deformation tests, acoustic emission, microscopy
Study of mechanical properties of magnesium-based composites
Farkas, Gergely ; Mathis, Kristián (advisor) ; Drozd, Zdeněk (referee)
In the present work, the mechanical properties of AJ51 magnesium alloy and composite is studied. Compression tests in the temperature range of 20řC-300řC have been preformed. The microstructure of the specimen was studied by means of light optical microscopy. The work is focused on the elucidation of the micromechanisms acting during plastic deformation of the composite specimens. Further a comparison between the mechanical properties of alloy and the composite is presented.

National Repository of Grey Literature : 45 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.