National Repository of Grey Literature 51 records found  previous11 - 20nextend  jump to record: Search took 0.02 seconds. 
Processing and properties of transparent polycrystalline ceramic materials
Tásler, Jan ; Pouchlý, Václav (referee) ; Maca, Karel (advisor)
The presented diploma thesis is focused on the preparation and properties of transparent polycrystalline ceramic materials based on Al2O3. Theoretically, the most important technological aspects of the processing of these materials are presented. Detailed attention is given to transparent Al2O3 polycrystalline ceramics doped with rare earth elements. The influence of microstructural parameters on the optical properties (represented by RIT) is investigated on Al2O3 samples doped and codoped with dysprosium, terbium and chromium. A significant effect of the average grain size on the light transmittance of all samples is observed. The highest RIT = 55 % (measured by a laser beam with a wavelength of 632,8 nm) was achieved by an optimized preparation process for a sample doped with 0,05 at. % of dysprosium. For all samples photoluminescent properties are also analysed. The photoluminescent emission spectra correspond to the activation of doping elements. In case of the terbium and chromium codoped samples, the differences in the activation of individual dopants depending on different excitation wavelengths were demonstrated, resulting in different colour emissions for different excitation wavelengths.
Sintering of advanced ceramic materials
Průdek, Miloš ; Trunec, Martin (referee) ; Maca, Karel (advisor)
V předložené diplomové práci bylo studováno slinování hexagonálního Al2O3 a kubického MgAl2O4 pomocí slinovacích cyklů složených z beztlakého předslinutí metodou dvojstupňového slinování s následným doslinutím s využitím tlaku (HIPováním). Cílem bylo pokusit se snížit (při zachování vysoké dosažené hustoty) střední velikost zrn a tím zvýšit tvrdost keramiky popř. optickou transparenci. Hlavní úsilí bylo věnováno optimalizaci předslinutí pomocí různých slinovacích cyklů. Přestože bylo vyzkoušeno velké množství různých kombinací teplot a prodlev dvojstupňového slinování, nepodařilo se výrazným způsobem zvýšit výslednou tvrdost vzorků. V případě kubického MgAl2O4 bylo dosaženo hustot blížících se teoretické hustotě, což se projevilo v optické transparentnosti vzorků.
Evolution of pores during sintering of advanced oxide ceramic materials
Spusta, Tomáš ; Kaštyl, Jaroslav (referee) ; Maca, Karel (advisor)
The goal of this bachelor’s thesis is to experimentally specify behaviour of pores in oxide ceramic materials (Al2O3, t-ZrO2, c-ZrO2), particularly to describe the transition from open to close porosity. Ceramics powders made by different producers and with different initial particle size (Al2O3 – AKP30, REYNOLDS, TAIMICRON; ZrO2 + 3 mol.% Y2O3 – TZ3Y, TZ3YSB; ZrO2 + 8 mol.% Y2O3 – TZ8Y, TZ8YSB) were used. Samples were pressed by cold isostatic pressing CIP at pressures of 100MPa and 300MPa, and pressureless sintered up to relative densities up to 88-96%. The obtained results show, that evolution is mainly affected by material, independently of size of initial particles neither by initial shaping pressure. Elimination of open pores occurs in cubic ZrO2 at 91-92 % of relative density, in tetragonal ZrO2 at 92-93 % of relative density and in Al2O3 at 94 % of relative density.
Fast sintering of advanced ceramic materials
Prajzler, Vladimír ; Salamon, David (referee) ; Maca, Karel (advisor)
The bachelor thesis is dealing with fast sintering of advanced ceramic materials, such as tetragonal zirconia and alumina in conventional resistance furnace. This approach is made possible by special superkanthal furnace, which is capable to reach a heating rate of 200 °C/min. Samples obtained through fast sintering reached relative density higher than 93% for zirkonia and 97% for alumina, without forming any cracks in samples. Achieved relative density in the case of tetragonal zirconia was higher for samples with larger pores in the green body. This behavior is different of conventional sintering and leads to considerations of heat transfer mainly by radiation.
Milling optimization of ceramic blanks
Ráčková, Jana ; Pouchlý, Václav (referee) ; Trunec, Martin (advisor)
The master thesis deals mainly with the optimization of machining of ceramic semi-finished products from ZrO2 and Al2O3. The first part with literary research, which describes the steps of the technology of forming ceramic bodies, especially the gelcasting method. The thesis describes possibilities of milling of ceramic materials using CNC technology. The thesis describes the dependence of acquired roughness on bodies and used machining strategies. The best roughness parameters on ZrO2 samples were obtained after they were calcined at 900 ° C, while the lowest roughness was obtained on the samples in the unprotected state for the Al2O3 samples. Samples machined with a spherical milling cutter showed surface roughness Ra = 1 m for ZrO2 and Ra = 1.3 m for Al2O3. It also describes the possibility of machining sharp-edged shapes and fine details where the best results are achieved on ZrO2 samples engraved at 900 and 1100 °C. Tool wear was particularly important when machining samples of Al2O3 ignited at temperatures above 800 °C.
The microstructure evaluation of advanced oxide ceramics during fast sintering
Prajzler, Vladimír ; Chlup, Zdeněk (referee) ; Maca, Karel (advisor)
The diploma thesis deals with influence of fast pressure-less sintering on the microstructure of advanced ceramic materials, namely -Al2O3 and tetragonal ZrO2 (doped by 3 mol% Y2O3) with particle sizes ranging from 60 nm to 270 nm. Fast and controlled heating rate was enabled by utilization of the special superkanthal furnace with moving sample holder. Defect-free bulk and dense samples were prepared using heating rates in order of 100-200 °C/min. Higher densities reached the samples pressed by higher pressures; the specimens with densities higher than 99 % t.d. were prepared within tens of minutes for alumina as well as for zirconia with very low thermal conductivity. Different behavior was observed only for material TZ-3Y, which exhibited core-shell structure with dense surface and porous centre after sintering at heating rates higher than 10 °C/min. It was shown in this work that such behavior was not primarily caused by the high thermal gradient resulting from high heating rates. Its creation was probably caused by chlorine impurities. The mechanism of desintering of these samples was described and eliminated by calcination of the samples at 1000 °C for 10 hours prior to fast sintering at 1500 °C, so even this material could be fast sintered up to 99.9 % theoretical density.
Preparation and properties of machinable ceramic materials
Sláma, Martin ; Matoušek, Aleš (referee) ; Cihlář, Jaroslav (advisor)
The thesis is focused on studying the machinability of ceramic material in dependence on presintering temperature. Alumina was used as an experimental material. The machinability of alumina was observed on samples produced by uniaxial pressing. Presintered and not-presintered disks were machined by cutter. Disks were presintered at 700°C, 800°C, 900°C and 1000°C for one or two hours. Machinability of alumina was tested according to four levels of the milled depth and according to temperature and the effect of dwell.
Sintering of advanced ceramic materials with the help of high-temperature dilatometry
Pouchlý, Václav ; Cihlář, Jaroslav (referee) ; Maca, Karel (advisor)
This diploma work is focused on exploitation of high-temperature dilatometry in sintering of advanced ceramic materials. Newly developed software is presented in this diploma work. This software is able to calculate activation energy of sintering process via concept of Master Sintering Curve. In the second part of diploma work the software was verified by evaluation of sintering of four different ceramics materials. The following activation energies of sintering were calculated: 990kJ/mol for tetragonal ZrO2 (3mol% Y2O3), 620kJ/mol for cubic ZrO2 (8mol% Y2O3) and 640kJ/mol resp. 720kJ for Al2O3 with two different particle size.
Study of Sintering of Nanoceramic Materials
Dobšák, Petr ; Hanykýř, Vladimír (referee) ; Havlica, Jaromír (referee) ; Šída, Vladimír (referee) ; Cihlář, Jaroslav (advisor)
The topic of the Ph.D. thesis was focused on the process of sintering alumina and zirconia ceramic materials with the aim to compare kinetics of sintering sub-micro and nanoparticle systems. Zirconia ceramic powders stabilized by different amount of yttria addition in the concentration range of 0 – 8 mol% were used. The different crystal structure (secured by yttria stabilization) of zirconia, as found, did not play statistically proven role in the process of zirconia sintering. The possible influence was covered by other major factors as particle size and green body structure, which does affect sintering in general. According to the Herrings law, the formula predicting sintering temperature of materials with different particle size was defined. The predicted sintering temperatures were in good correlation with the experimental data for zirconia ceramic materials prepared from both, coarser submicrometer, and also nanometer powders. In case of alumina ceramics the predicted and experimentally observed sintering temperature values did not match very well. Mainly the nanoparticle alumina materials real sintering temperature values were markedly higher than predicted. The reason was, as shown in the work, strong agglomeration of the powders and strong irregularities of particle shape. The major role of green body microstructure in the sintering process was confirmed. The final density of ceramic materials was growing in spite of sintering temperature, which was decreasing together with pore - particle size ratio (materials with similar particle size were compared). Sintering temperature was increasing together with growing size of pores trapped in the green body structure. Clear message received from the above mentioned results was the importance of elimination of stable pores with high coordination number out off the green body microstructure during shaping ceramic green parts. Same sintering kinetics model was successfully applied on the sintering process of submicro- and also nanometer zirconia ceramics. Activation energy of nanometer zirconia was notably lower in comparison to submicrometer material. For the sintering of nanoparticle zirconia was typical so called “zero stage” of sintering, clearly visible on kinetic curves. It was found out, that processes running in zirconia “green” material during zero stage of sintering are heat activated and their activation energy was determined. Pores of submicrometer zirconia were growing in an open porosity stage of sintering just a slightly (1.3 times) compared to the nanoparticle zirconia, where the growth was much higher (5.5 times of the initial pore diameter). This difference was most probably caused by preferential sintering of agglomerates within the green bodies and by particle rearrangement processes which appears in the zero stage of sintering of nanoparticular ceramics. The technology of preparation of bulk dense ytria stabilized zirconia nanomaterial with high relative density of 99.6 % t.d. and average grain size 65nm was developed within the thesis research.
Welding of aluminium sizable weldments.
Tkaný, Jan ; Kovář, Petr (referee) ; Daněk, Ladislav (advisor)
This thesis created within the general Bachelor's study gives insight into the basic division of aluminum alloy, a summary of technologies and principles of welding aluminum and its alloys. It is focused on the description of cutting Al alloy and their suitability for welding, the characteristics of different methods and description of problems in the welding of large-scale aluminum weldments. For each of the methods are given the possibility of application, a description and diagram of operation and specifics on the protective gas or electrodes. Problems in the welding of large parts are characterized by external and internal deformations, complex stress fields, where appropriate, the temperature fields. To determine the size of the deflection angle is given an example of the chart for the practical use. In conclusion it is stated that the method is appropriate to apply in case of large weldments.

National Repository of Grey Literature : 51 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.