National Repository of Grey Literature 93 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
The effect of environmental factors on mesenchymal stem cells
Hlávka, Jakub ; Krulová, Magdaléna (advisor) ; Vištejnová, Lucie (referee)
Mesenchymal stem cells (MSCs) have the potential to be a valuable therapeutic tool due to their capacity for differentiation and immunomodulation. However, in order to ensure their efficacy in clinical applications, it is necessary to gain a comprehensive understanding of the factors influecing their properties. This bachelor thesis investigates the influence of environmental factors, including physical activity, temperature and light exposure, on MSCs functionality. Additionally it desribes the underlying mechanisms involved in the action of these factors. Finally, it evaluates the theoretical implications of exploiting environmental cues to enhance MSCs properites. An understanding of how environmental conditions shape MSCs behavior is essential for optimising their therapeutic potential and advancing regenerative medicine strategies. Key words: mesenchymal stem cells, environmental factors, physical activity, temperature, light
Impact of nanomaterials on mesenchymal stem cells and tissue regeneration
Echalar, Barbora ; Holáň, Vladimír (advisor) ; Hubálek Kalbáčová, Marie (referee) ; Buchtová, Marcela (referee)
Nanomaterials (NMs) are widely used in medicine for their antimicrobial properties. They are part of antibacterial coatings, creams, pharmaceutical vehicles or additives in drugs and other medical products. However, the impact of NMs on human organism is still not completely established. Nanoparticles (NPs) penetrate the cell membrane and enter to intracellular compartments including the nuclei. Different types of NPs could have various side effects on cell functions. These side effects include the damage of stem cells (SCs) or immune cells lead to slower regeneration and impaired wound healing. Therefore, the simultaneous application of NPs during SC therapy could decrease the therapeutic abilities of SCs. One type of SCs tested in clinical therapies nowadays are mesenchymal stem cells (MSCs). Therefore, we studied the impact of metal NPs (i.e. silver, copper oxide, zinc oxide and titanium dioxide) on characteristics and functional properties of mouse MSCs. Additionally, the effect of NPs on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors was analyzed. We found that all types of tested NPs had a negative impact on the activity of MSCs and thus could alter tissue...
Modulation of mitochondrial transfer by influencing mesenchymal stem cells
Fráňová, Markéta ; Krulová, Magdaléna (advisor) ; Rohlenová, Kateřina (referee)
Mesenchymal stem cells (MSCs) have the ability to modulate the immune response. They use several mechanisms to affect the function of immune cells, and mitochondrial transfer is one of them. Recieving mitochondria from MSCs induces metabolic changes in immune cells, thereby promoting their shift to an anti-inflammatory phenotype. Due to their properties, MSCs have a potencial to be used in therapies, for example in a treatment of autoimmune diseases. The problem of MSCs-based therapies is their low efficacy, mainly due to the high mortality of stem cells after transplantation. In order to achieve at least some effect, the large number of cells is needed for application. The required number of cells can be obtained only by in vitro expansion. However, a long-term culture has a negative impact on MSCs and their immunomodulatory properties. Enhancing MSCs function could increase the efficacy of MSCs-based therapies. The aim of this thesis was to determine whether mitochondrial transfer can be modulated by stimulation of MSCs with selected factors. MSCs were treated with rapamycin, insulin-like growth factor 1 (IGF-1), interferon gamma, or oligomycin. Then the effect of these factors on mitochondria and their transfer to immune cells, metabolism, and immunomodulatory properties of MSCs was analyzed. We...
Fluorescent Methods in Research of Eukaryotic Cells
Chmelíková, Larisa ; Babula, Petr (referee) ; Pešl,, Martin (referee) ; Provazník, Ivo (advisor)
Tato práce zkoumá aplikaci fluorescenčních metod používaných v in vitro studiích v oblasti regenerace srdeční tkáně. Konfokální fluorescenční mikroskopie je vhodnou mikroskopickou technikou pro výzkum v této oblasti, protože umožňuje vizualizaci 3D struktur a distribuce buněk ve 3D modelech. Používané fluorescenční markery by měly být dlouhodobě stabilní, biokompatibilní a netoxické pro živé buňky. V současné době je použití nanočástic jako superparamagnetické nanočástice oxidu železa (SPION) velmi populární; velké množství studií ukazuje, že jsou vhodné pro dlouhodobé experimenty. Tento výzkum využívá superparamagnetické maghemitové nanočástice svázaným rhodaminem na jejich povrchu (SAMN-R) a popisuje jejích excitační a emisní spektrum, velikost a lokalizaci vbuňkách. Stanovení toxicity bylo provedeno měřením reaktivních forem kyslíku (ROS) a nekvantitativním měřením pomocí fluorescenční mikroskopie bylo zjištěno, že hodnota dávky 20 µg·cm-2 je optimální pro aplikaci na živé buňky. Dále byl zkoumán vliv aplikace SAMN-R na buněčnou proliferaci a motilitu, kdy ve studii buněčné proliferace a scratch assay byla použita buněčná linie fibroblastů 3T3. Poté byla studována migrace jednotlivých buněk s použitím mezenchymálních kmenových buněk (MSCs), izolovaných zlidské tukové tkáně. Následná statistická analýza nepotvrdila, že by aplikace SAMN-R měla významný vliv na buněčnou proliferaci, kolektivní migraci nebo na migraci jednotlivých buněk. Lze tedy předpokládat, že SAMN-R jsou vhodným fluorescenčním markerem pro výzkum živých buněk, včetně experimentů voblasti regenerace tkáně. MSC buňky izolované z tukové tkáně mají velký potenciál v regeneraci srdeční tkáně. Jejich interakce s buněčnou linií srdečních svalových buněk HL-1 byly studovány pomocí scratch assay, kdy se tento model jeví jako nadějný a vhodný pro studium buněčných kontaktů a jejich roli přiregeneraci buněk.
Study of mesenchymal stem cell migration in the extracellular matrix based on principles of chemotaxis
Scholasterová, Viktorie ; Fohlerová, Zdenka (referee) ; Chmelíková, Larisa (advisor)
This thesis engages in a study of mesenchymal stem cell migration in extracellular matrix based on principles of chemotaxis. First, attention is focused on a theoretical part associated with a clarification of basic terms such as extracellular matrix, migration, confocal microscopy, mesenchymal stem cells or chemotaxis. There is also included a list and a description of some basic methods for monitoring cell migration and a more detailed description of a method called transwell assay, which has been chosen for an experiment in a practical part of this thesis. This part includes protocols of individual steps for the preparation of the experiment, the procedure of data processing obtained by scanning cells with a confocal microscope and a description of the resulting confluence values.
Fluorescence of organic dye in free form or bound on metal nanoparticles analysis using confocal microscopy
Mocko, Štefan ; Chmelíková, Larisa (referee) ; Čmiel, Vratislav (advisor)
This bachelor`s thesis deals with the long-term analysis of the fluorescence of rhodamine dye, which is linked to the ferric SPIO nanoparticles. The first part introduces the necessary scientific basis for understanding the physical phenomenon of fluorescence. It also focuses on the hardware and software for the development of long-term analysis of fluorescence for mesenchymal stem cells.Finally, there is described an analytical software to work with measured data, which was developed for this work.
Study of mesenchymal stem cell migration based on principles of chemotaxis
Pošustová, Veronika ; Skopalík, Josef (referee) ; Chmelíková, Larisa (advisor)
The purpose of this Master thesis is to verify migration of mesenchymal stem cells on the principle known as chemotaxis. First part of this study is focused on cell migration in order to explain the whole migration process. Next part describes various chemotaxis methods and selected studies dealing with clinical applications of mesenchymal stem cells in different medical and biomedical fields. The following step describes confocal microscopy, which is used for acquiring images of the cells. The experimental part is focused on cultivation of mesenchymal stem cells in a laboratory, which is necessary for cell vitality. Furthermore, there are designed two main experiments. Firstly there is a 2D experiment with adherent cells for chemotaxis using -Slide Chemotaxis. Secondly Transwell migration test is designed and executed. Finally, the acquired images from confocal microscope are used for image processing, which was done in Matlab R2020a programming environment. The result of this processing is evaluation of cell confluence and migration. In the end, experimental part of this study was optimized according to recommended studies. The results are summarized in the conclusion with proposal for improvements of those methods.
Comparison of immunomodulatory properties of mesenchymal stem cells and Sertoli cells
Porubská, Bianka ; Krulová, Magdaléna (advisor) ; Komrsková, Kateřina (referee) ; Filipp, Dominik (referee)
Cell therapies are increasingly considered in preclinical studies and in the future of medicine. The main cell type investigated in this manner is mesenchymal stem cells (MSCs), because of their strong immunomodulatory properties. The efficacy of the therapy depends on various aspects, such as the viability and source of MSCs, the purity of the cell suspension and many more. There is a need for more tailored therapy and the use of cell type better fitting for the specific pathology. Sertoli cells (SCs) are deemed by some authors to be a kind of MSCs, namely because of their similar immunomodulatory properties. Because they reside in the seminiferous tubules in the testes, they are a promising candidate for the treatment of inflammatory pathologies of testicular tissue, such as bacterial infection-induced infertility. In vitro comparison of the ability of MSCs and SCs to differentiate into mesenchymal cell lineages such as osteocyte, chondrocyte, and adipocyte showed success in the case of SCs, providing evidence for their mesenchymal origin. The effect of MSCs or SCs on activated immune cells in vitro showed immunosuppression in both cases with distinct features. MSCs suppressed Th17 cell activation and IL-17 production by CD4+ T cells and SCs down-regulated TNFα and IL-2 production by these cells,...
Modern therapy of chondral defects
Neckař, Pavel ; Havlas, Vojtěch (advisor) ; Zeman, Petr (referee) ; Tuček, Michal (referee)
The thesis describes the application of cultured bone marrow stem cells in the therapy of focal chondral defect of the knee joint. In the experimental part of the work, the goal was to quantitatively and qualitatively compare two sampling sites of bone marrow monocytic aspirates, the iliac crest bone and the proximal tibia, in order to determine a suitable cell source for advanced cell therapy. The sample analysis showed that the amount of monocytic cells and the yield of stem cells from the aspirate obtained were significantly higher in the bone marrow from the iliac crest. We did not find significant qualitative differences between the two sources of stem cells. In the clinical part of the work, I present a description of the surgical procedure and the results of a 1-year follow-up of patients after the implantation of cultured stem cells from the bone marrow, under the name BiCure® orthoMSCp (Bioinova, Prague, Czech Republic), fixed on a commercially available 3D scaffold Chondrotissue® (BioTissue AG, Geneva, Switzerland) using coagulated autologous platelet-rich plasma. The primary objective of the clinical study included the evaluation of the short-term and long-term safety of the applied medical product. The secondary objective of the work included the assessment of the effectiveness of the...
Human Dental Pulp Stem Cells Cultured in Xenogeneic-Free Supplemented Media
Suchánková Kleplová, Tereza ; Jouklová, Nela (advisor) ; Merglová, Vlasta (referee) ; Bartoňová, Marie (referee)
Human dental pulp stem cells cultured in xenogeneic-free supplemented media Summary Introduction: The topic of the study is the cultivation of dental pulp stem cells (hDPSCs) in a xenogeneic-free culture medium. It is not permissible to use cells upon growing under the influence of xenogeneic (extraneous) substances in human clinical practice. The most frequently used in cultivation of hDPSCs is fetal calf serum (FCS/FBS). Unfortunately, these supplements are widespread in hMSCs cultivation, and all gold standard hMSCs properties were postulated in cells cultivated using these supplements. This raises the basic question if and how xenogeneic blood derivatives affect the properties of cells and their growth characteristics. There are two options for replacing these xenogeneic substances in the culture medium: the so-called serum-free media, or human blood supplements, ideally autologous ones. The conducted research was aimed at identifying the effects of xenogeneic and human blood supplements on basic hDPSCs characteristics that are fundamental to introduce the cell therapy into regular medical practice. Method: By culturing 12 hDPSC lines obtained from adult, deciduous, and natal teeth in 12 different culture media, we investigated the effect of FCS, human blood derivatives, i.e., blood plasma (HP), and...

National Repository of Grey Literature : 93 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.