Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Processing of aerogel coatings on bulk materials substrates
Torres Rodríguez, Jorge Alberto ; Torre, Sebastián Díaz de la (oponent) ; Pinkas, Jiří (oponent) ; Kaiser, Jozef (vedoucí práce)
In this thesis, a systematic study of the synthesis and processing of advanced thermal-stable aerogels for potential high-temperature applications was carried out. The first part of this work details the synthetic implications to prepare an aerogel and its applications along with a description of the sol-gel coatings deposition techniques. The experimental procedure is divided into three sections. The first one shows the followed synthetic protocols to prepare ZrO2, YSZ, Ln2Zr2O7 (Ln = La3+, Nd3+, Gd3+, and Dy3+) aerogels, and Ln2Zr2O7 powders and xerogels. Then is described the used deposition method to prepare aerogel coatings on metallic substrates. Followed this, the characterization techniques are specified. It was found that the amount of water and nitric acid plays a determinant role to obtain suitable wet gels to transform into aerogels. Upon calcination at 500 °C, the ZrO2 and YSZ aerogels have a high surface area up to 114 m2 g-1, however, at 1000 °C, complete densification occurs losing all their porous structure. In comparison with the ZrO2 and YSZ, the Ln2Zr2O7 aerogels are thermally more stable since preserves their porosity at elevated calcination (1000 °C) with values >160 m2 g-1. In the studied temperature range, the ZrO2 aerogel experiment a complex tetragonal monoclinic phase transition driven by the crystallite size, while the YSZ is constituted by single-tetragonal phase. The phase composition of the rare-earth zirconates is highly dependent on the synthesis method; all the Ln2Zr2O7 materials are pyrochlore or fluorite crystalline phases. The direct casting of the aerogel on the metallic substrate yield completely broken coatings due to effect of shrinkage, while the slurry dip-coating allowed to fabricate homogeneous, thick, and coarse aerogel coatings. These coatings do not present phase changes and remain highly porous after different heat treatments.
Processing of aerogel coatings on bulk materials substrates
Torres Rodríguez, Jorge Alberto ; Torre, Sebastián Díaz de la (oponent) ; Pinkas, Jiří (oponent) ; Kaiser, Jozef (vedoucí práce)
In this thesis, a systematic study of the synthesis and processing of advanced thermal-stable aerogels for potential high-temperature applications was carried out. The first part of this work details the synthetic implications to prepare an aerogel and its applications along with a description of the sol-gel coatings deposition techniques. The experimental procedure is divided into three sections. The first one shows the followed synthetic protocols to prepare ZrO2, YSZ, Ln2Zr2O7 (Ln = La3+, Nd3+, Gd3+, and Dy3+) aerogels, and Ln2Zr2O7 powders and xerogels. Then is described the used deposition method to prepare aerogel coatings on metallic substrates. Followed this, the characterization techniques are specified. It was found that the amount of water and nitric acid plays a determinant role to obtain suitable wet gels to transform into aerogels. Upon calcination at 500 °C, the ZrO2 and YSZ aerogels have a high surface area up to 114 m2 g-1, however, at 1000 °C, complete densification occurs losing all their porous structure. In comparison with the ZrO2 and YSZ, the Ln2Zr2O7 aerogels are thermally more stable since preserves their porosity at elevated calcination (1000 °C) with values >160 m2 g-1. In the studied temperature range, the ZrO2 aerogel experiment a complex tetragonal monoclinic phase transition driven by the crystallite size, while the YSZ is constituted by single-tetragonal phase. The phase composition of the rare-earth zirconates is highly dependent on the synthesis method; all the Ln2Zr2O7 materials are pyrochlore or fluorite crystalline phases. The direct casting of the aerogel on the metallic substrate yield completely broken coatings due to effect of shrinkage, while the slurry dip-coating allowed to fabricate homogeneous, thick, and coarse aerogel coatings. These coatings do not present phase changes and remain highly porous after different heat treatments.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.