Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
High frequency electron spin resonance spectroscopy
Hrubý, Jakub ; Perfetti, Mauro (oponent) ; ShangDa, Jiang (oponent) ; Neugebauer, Petr (vedoucí práce)
Electron spin resonance (ESR) is a non-invasive magnetic-resonance-based spectroscopic technique. It is used in many scientific fields such as biology, chemistry, and physics to investigate systems with unpaired electrons. This doctoral thesis deals with high-frequency electron spin resonance (HF-ESR) spectroscopy and its use on paramagnetic coordination compounds. The first part outlines theoretical basics with literature research in this field and shows the HF-ESR applications. Afterwards, methods used to study systems of interest are presented. Herein, the complementary spectroscopic methods (XPS, RS, UV-VIS, AFM, SEM) are described, and the design of a newly built high-vacuum (HV) sublimation chamber was developed for the preparation of thin films of coordination compounds on surfaces. The next part deals with results obtained by HF-ESR on molecular quantum bits [Cu(dbm)2], single-molecule magnets [CoX2(dppf)], [Co(4MeO-L)2Cl2], and vision of graphene-based bolometers for detection of this class of compounds is outlined. The results are further discussed, and their implications are summarised in conclusions. Finally, references and the author's outputs make up the final chapters of this work.
High frequency electron spin resonance spectroscopy
Hrubý, Jakub ; Perfetti, Mauro (oponent) ; ShangDa, Jiang (oponent) ; Neugebauer, Petr (vedoucí práce)
Electron spin resonance (ESR) is a non-invasive magnetic-resonance-based spectroscopic technique. It is used in many scientific fields such as biology, chemistry, and physics to investigate systems with unpaired electrons. This doctoral thesis deals with high-frequency electron spin resonance (HF-ESR) spectroscopy and its use on paramagnetic coordination compounds. The first part outlines theoretical basics with literature research in this field and shows the HF-ESR applications. Afterwards, methods used to study systems of interest are presented. Herein, the complementary spectroscopic methods (XPS, RS, UV-VIS, AFM, SEM) are described, and the design of a newly built high-vacuum (HV) sublimation chamber was developed for the preparation of thin films of coordination compounds on surfaces. The next part deals with results obtained by HF-ESR on molecular quantum bits [Cu(dbm)2], single-molecule magnets [CoX2(dppf)], [Co(4MeO-L)2Cl2], and vision of graphene-based bolometers for detection of this class of compounds is outlined. The results are further discussed, and their implications are summarised in conclusions. Finally, references and the author's outputs make up the final chapters of this work.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.