Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.01 vteřin. 
Vysoké okruhy
Penk, Tomáš ; Žemlička, Jan (vedoucí práce) ; Šťovíček, Jan (oponent)
Perfektní a max okruhy jsou známy přes padesát let. Jejich teorie se stále intenzivně studuje. Podmínky, které je definují, jsou přitom zajímavé hlavně při studiu modulů, které nejsou noetherovské. V této práci nejprve shrneme základní poznatky o okruzích a modulech, přičemž se předpokládají předchozí znalosti pouze na úrovni základního kurzu. Poté, co shrneme některé elementární výsledky týkající se noetherovských modulů, budeme připraveni na definici vysokých modulů a vysokých okruhů. Dále ukážeme, že jsou v určitém směru zobecněním perfektních a max okruhů. Uvedeme některé příklady vysokých a nevysokých okruhů, přičemž se podrobněji zaměříme na komutativní okruhy. Poznatky, které tak získáme, se pokusíme zobecnit a využít je při hledání některých nutných a některých postačujících podmínek pro to, abychom o komutativním okruhu mohli prohlásit, zda je či není vysoký. Na závěr ukážeme, že pro noetherovské komutativní okruhy jsou tyto podmínky navzájem ekvivalentní, a dávají tak k pojmu vysoký okruh ekvivalentní charakterizaci.
Integrální reprezentace operátorových algeber
Penk, Tomáš
Reprezentací C*-algebry A na Hilbertově prostoru H rozumíme morfismus : A → L(H). Po shrnutí potřebných poznatků z teorie Banachových a Hilbertových prostorů a C*-algeber ukážeme, že pro každou C*-algebru existuje reprezentace. Popíšeme podrobněji její strukturu a zaměříme se na zkoumání cyklických reprezentací. Zjistíme, že cyklické reprezentace souvisí se stavovým prostorem. Protože každý stav lze psát jako integrál podle vhodné míry na stavech, lze ke každé cyklické reprezentaci přiřadit míru na stavovém prostoru. Proto budeme dále zkoumat souvislost reprezentace jak s touto mírou, tak i s odpovídajícím stavem. To nás povede k definici ortogonální míry. Zjistíme, že její vlastnosti souvisí s jistými podalgebrami L(H). Nakonec ukážeme, že pro separabilní C*-algebru lze reprezentaci splňující vhodné předpoklady psát ve formě direktního integrálu. 1
Integrální reprezentace operátorových algeber
Penk, Tomáš
Reprezentací C*-algebry A na Hilbertově prostoru H rozumíme morfismus : A → L(H). Po shrnutí potřebných poznatků z teorie Banachových a Hilbertových prostorů a C*-algeber ukážeme, že pro každou C*-algebru existuje reprezentace. Popíšeme podrobněji její strukturu a zaměříme se na zkoumání cyklických reprezentací. Zjistíme, že cyklické reprezentace souvisí se stavovým prostorem. Protože každý stav lze psát jako integrál podle vhodné míry na stavech, lze ke každé cyklické reprezentaci přiřadit míru na stavovém prostoru. Proto budeme dále zkoumat souvislost reprezentace jak s touto mírou, tak i s odpovídajícím stavem. To nás povede k definici ortogonální míry. Zjistíme, že její vlastnosti souvisí s jistými podalgebrami L(H). Nakonec ukážeme, že pro separabilní C*-algebru lze reprezentaci splňující vhodné předpoklady psát ve formě direktního integrálu. 1
Integrální reprezentace operátorových algeber
Penk, Tomáš ; Spurný, Jiří (vedoucí práce) ; Hamhalter, Jan (oponent)
Reprezentací C*-algebry A na Hilbertově prostoru H rozumíme morfismus : A → L(H). Po shrnutí potřebných poznatků z teorie Banachových a Hilbertových prostorů a C*-algeber ukážeme, že pro každou C*-algebru existuje reprezentace. Popíšeme podrobněji její strukturu a zaměříme se na zkoumání cyklických reprezentací. Zjistíme, že cyklické reprezentace souvisí se stavovým prostorem. Protože každý stav lze psát jako integrál podle vhodné míry na stavech, lze ke každé cyklické reprezentaci přiřadit míru na stavovém prostoru. Proto budeme dále zkoumat souvislost reprezentace jak s touto mírou, tak i s odpovídajícím stavem. To nás povede k definici ortogonální míry. Zjistíme, že její vlastnosti souvisí s jistými podalgebrami L(H). Nakonec ukážeme, že pro separabilní C*-algebru lze reprezentaci splňující vhodné předpoklady psát ve formě direktního integrálu. 1
Vysoké okruhy
Penk, Tomáš ; Žemlička, Jan (vedoucí práce) ; Šťovíček, Jan (oponent)
Perfektní a max okruhy jsou známy přes padesát let. Jejich teorie se stále intenzivně studuje. Podmínky, které je definují, jsou přitom zajímavé hlavně při studiu modulů, které nejsou noetherovské. V této práci nejprve shrneme základní poznatky o okruzích a modulech, přičemž se předpokládají předchozí znalosti pouze na úrovni základního kurzu. Poté, co shrneme některé elementární výsledky týkající se noetherovských modulů, budeme připraveni na definici vysokých modulů a vysokých okruhů. Dále ukážeme, že jsou v určitém směru zobecněním perfektních a max okruhů. Uvedeme některé příklady vysokých a nevysokých okruhů, přičemž se podrobněji zaměříme na komutativní okruhy. Poznatky, které tak získáme, se pokusíme zobecnit a využít je při hledání některých nutných a některých postačujících podmínek pro to, abychom o komutativním okruhu mohli prohlásit, zda je či není vysoký. Na závěr ukážeme, že pro noetherovské komutativní okruhy jsou tyto podmínky navzájem ekvivalentní, a dávají tak k pojmu vysoký okruh ekvivalentní charakterizaci.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.