Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
REGULATORY NETWORK OF DRUG-INDUCED ENZYME PRODUCTION: PARAMETER ESTIMATION BASED ON THE PERIODIC DOSING RESPONSE MEASUREMENT
Papáček, Štěpán ; Lynnyk, Volodymyr ; Rehák, Branislav
The common goal of systems pharmacology, i.e. systems biology applied to the eld of pharmacology, is to rely less on trial and error in designing an input-output systems, e.g. therapeutic schedules. In this paper we present, on the paradigmatic example of a regulatory network of drug-induced enzyme production, the further development of the study published by Duintjer Tebbens et al. (2019) in the Applications of Mathematics. Here, the key feature is that the nonlinear model in form of an ODE system is controlled (or periodically forced) by an input signal being a drug intake. Our aim is to test the model features under both periodic and nonrecurring dosing, and eventually to provide an innovative method for a parameter estimation based on the periodic dosing response measurement.
Systems biology analysis of a drug metabolism (with slow-fast. . . )
Papáček, Štěpán ; Lynnyk, Volodymyr ; Rehák, Branislav
In the systems biology literature, complex systems of biochemical reactions (in form of ODEs) have become increasingly common. This issue of complexity is often making the modelled processes (e.g. drug metabolism, XME induction, DDI) difficult to intuit or to be computationally tractable, discouraging their practical use.
Message Embedded Synchronization for the Generalized Lorenz System and Its Use for Chaotic Masking
Čelikovský, Sergej ; Lynnyk, Volodymyr
This paper implements and analyzes the well-known message embedded synchronization scheme for the case of the generalized Lorenz system. Such a synchronization may be used for chaotic masking scheme using a single channel only. This method was already discussed in the earlier literature for the particular classes of systems. In this paper, a more general class wheremessage embedded synchronization is possible is described. Then, it is shown that the generalized Lorenz system falls within that class. Furthermore, using the resulting synchronization, the novel secure encryption scheme is proposed. It requires very reasonable amount of data to encrypt and time to decrypt one bit. Basically, to encrypt one bit, only one iteration (i.e. only one real number of 6 valid digits) is needed. At the same time, 100 percent of the carrying chaotic signal can be used. The method is also demonstrated by numerical simulations of a digital data encryption and decryption.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.