Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Studies towards the Preparation of Organic-Inorganic Hybrid Silica Fibers via Electrospinning
Koukolová, Anna ; Dzik, Petr (oponent) ; Hüsing, Nicola (vedoucí práce)
Polyorganosilanes are an emerging class II hybrid material potentially enabling the preparation of new materials with novel functionalities. Although some pertinent intriguing materials and applications have been investigated, to date, the preparation of polyorganosilane-based micro and nanofibers has not been reported. Therefore, the present thesis deals with the investigation of poly(vinylmethyldimethoxysilane) as a novel precursor for the preparation of fibers via electrospinning. Free-radical bulk polymerization of vinylmethyldimethoxysilane was performed in order to obtain polymeric products of various molecular weights. The degree of polymerization was studied with respect to the radical starter concentration by dynamic light scattering and nuclear magnetic resonance spectroscopy experiments. Investigations of the ability to form fibers by electrospinning from solutions of the synthetized polymers were conducted with special emphasis on the properties of the used polymeric product and the spinning solution. Results showed that the studied polymer is in principle suitable for the preparation of fibers. However, only fragments of fibers were obtained by electrospinning of the polymers using methanol as a solvent. Further investigations, employing a sol-gel processing approach in order to enhance the number of polymer chain entanglements and thus increase spinnability, were conducted. It was found that the stage of gelation was crucial and the sol-gel process was investigated towards several parameters such as gelation time with respect to pH and water content. Again, fiber fragments could be obtained using optimized sol-gel processing parameters. Finally, a strategy utilizing a carrier polymer successfully yielded polyorganosilane-based fibers and the resulting fiber morphology was correlated to the employed process parameters.
Studies towards the Preparation of Organic-Inorganic Hybrid Silica Fibers via Electrospinning
Koukolová, Anna ; Dzik, Petr (oponent) ; Hüsing, Nicola (vedoucí práce)
Polyorganosilanes are an emerging class II hybrid material potentially enabling the preparation of new materials with novel functionalities. Although some pertinent intriguing materials and applications have been investigated, to date, the preparation of polyorganosilane-based micro and nanofibers has not been reported. Therefore, the present thesis deals with the investigation of poly(vinylmethyldimethoxysilane) as a novel precursor for the preparation of fibers via electrospinning. Free-radical bulk polymerization of vinylmethyldimethoxysilane was performed in order to obtain polymeric products of various molecular weights. The degree of polymerization was studied with respect to the radical starter concentration by dynamic light scattering and nuclear magnetic resonance spectroscopy experiments. Investigations of the ability to form fibers by electrospinning from solutions of the synthetized polymers were conducted with special emphasis on the properties of the used polymeric product and the spinning solution. Results showed that the studied polymer is in principle suitable for the preparation of fibers. However, only fragments of fibers were obtained by electrospinning of the polymers using methanol as a solvent. Further investigations, employing a sol-gel processing approach in order to enhance the number of polymer chain entanglements and thus increase spinnability, were conducted. It was found that the stage of gelation was crucial and the sol-gel process was investigated towards several parameters such as gelation time with respect to pH and water content. Again, fiber fragments could be obtained using optimized sol-gel processing parameters. Finally, a strategy utilizing a carrier polymer successfully yielded polyorganosilane-based fibers and the resulting fiber morphology was correlated to the employed process parameters.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.