Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Optimization of antibacterial properties of polymer-phosphate bone fillers
Grézlová, Veronika ; Michlovská, Lenka (oponent) ; Vojtová, Lucy (vedoucí práce)
Proposed diploma thesis is focused on the preparation of polymer-phosphate bone cement. The aim is to optimize antibacterial properties of the cement by adding selenium nanoparticles (SeNPs). The theoretical part describes the characteristics of bone, properties od tricalcium phosphate (TCP) and its polymorphs, the use of bone cement and antibacterial nanoparticles in medicine. The experimental part deals with the preparation of samples, description of the used methods and evaluation of the effect of SeNPs on the bone cement setting reaction, morphology, crystallinity, mechanical, rheological and antibacterial properties. As a result, SeNPs improved bone cement injectability and increased setting reaction with the positive effect on cement mechanical properties. Antibacterial properties of samples were tested using both disk and dilution method resulting in the positive inhibition effect of SeNPs on gram-positive bacteria (G+), especially Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The quantitative SeNPs release from modified polymer-phosphate bone cement enable its use as antibacterial bone filler (e.g. for osteomyelitis treating).
Optimization of antibacterial properties of polymer-phosphate bone fillers
Grézlová, Veronika ; Michlovská, Lenka (oponent) ; Vojtová, Lucy (vedoucí práce)
Proposed diploma thesis is focused on the preparation of polymer-phosphate bone cement. The aim is to optimize antibacterial properties of the cement by adding selenium nanoparticles (SeNPs). The theoretical part describes the characteristics of bone, properties od tricalcium phosphate (TCP) and its polymorphs, the use of bone cement and antibacterial nanoparticles in medicine. The experimental part deals with the preparation of samples, description of the used methods and evaluation of the effect of SeNPs on the bone cement setting reaction, morphology, crystallinity, mechanical, rheological and antibacterial properties. As a result, SeNPs improved bone cement injectability and increased setting reaction with the positive effect on cement mechanical properties. Antibacterial properties of samples were tested using both disk and dilution method resulting in the positive inhibition effect of SeNPs on gram-positive bacteria (G+), especially Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The quantitative SeNPs release from modified polymer-phosphate bone cement enable its use as antibacterial bone filler (e.g. for osteomyelitis treating).

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.