National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Automated number plate recognition from low quality video-sequences
Vašek, Vojtěch ; Franc, Vojtěch (advisor) ; Šikudová, Elena (referee)
The commercially used automated number plate recognition (ANPR) sys- tems constitute a mature technology which relies on dedicated industrial cam- eras capable of capturing high-quality still images. In contrast, the problem of ANPR from low-quality video sequences has been so far severely under- explored. This thesis proposes a trainable convolutional neural network (CNN) with a novel architecture which can efficiently recognize number plates from low-quality videos of arbitrary length. The proposed network is experimentally shown to outperform several existing approaches dealing with video-sequences, state-of-the-art commercial ANPR system as well as the human ability to recog- nize number plates from low-resolution images. The second contribution of the thesis is a semi-automatic pipeline which was used to create a novel database containing annotated sequences of challenging low-resolution number plate im- ages. The third contribution is a novel CNN based generator of super-resolution number plate images. The generator translates the input low-resolution image into its high-quality counterpart which preserves the structure of the input and depicts the same string which was previously predicted from a video-sequence. 1

See also: similar author names
2 Franc, Viktor
2 Franc, Vladimír