Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
Určování lomově-mechanických charakteristik z podrozměrných zkušebních těles
Stratil, Luděk ; Džugan, Jan (oponent) ; Haušild, Petr (oponent) ; Dlouhý, Ivo (vedoucí práce)
Pro stanovení lomové houževnatosti jsou ve standardech stanoveny požadavky na velikost zkušebních těles. V případech limitovaného množství zkušebního materiálu nabízejí jednu z možností hodnocení houževnatosti miniaturní zkušební tělesa. Kvůli malým zatěžovaným objemům na čele trhliny dochází v těchto tělesech ke ztrátě constraintu, což vede k ovlivnění měřených hodnot houževnatosti a nesplnění velikostních požadavků na určení platných lomově mechanických charakteristik. Pro své malé rozměry se tato tělesa nacházejí na hranici ruční manipulace a silového rozsahu zkušebních strojů. Důležitou úlohou je pak při zvládnuté metodice přípravy, měření deformace a zkoušení těchto těles interpretace měřených hodnot lomově mechanických charakteristik a jejich případná korekce vzhledem k tělesům standardní velikosti. V oblasti horních prahových hodnot je u miniaturních těles stále nedostatečně řešena zvláště otázka kvantifikace a interpretace vlivu velikosti. Práce je svým zaměřením experimentálně výpočtovou studií zaměřenou na hodnocení vlivu velikosti zkušebního tělesa na lomovou houževnatost v oblasti horních prahových hodnot. Vliv velikosti byl kvantifikován zkoušením miniaturních těles a těles větší velikosti s cílem určení jejich J R křivek. V rámci práce byla věnována pozornost dvěma geometriím miniaturních zkušebních těles, miniaturnímu tělesu pro tříbodový ohyb a excentrické zatěžování. Jako experimentální materiál byly zvoleny pokročilé oceli vyvinuté pro jaderný a energetický průmysl, ocel Eurofer97 a ODS ocel MA956. Za účelem hodnocení a interpretace napěťově deformačního stavu na čele trhliny ve zkoušených tělesech pro ocel Eurofer97 byly realizovány simulace provedených testů pomocí metody konečných prvků a pomocí mikromechanického modelu tvárného porušení. V rámci srovnávání experimentů a simulací J R křivek byly odvozeny vzájemné závislosti geometrie tělesa a vhodné velikosti prvku v simulaci pro daný materiál. Na základě těchto vztahů byla navržena metodika, která může být použita k predikci J R křivky tělesa standardních rozměrů. Hlavním přínosem práce je zjištění vlivu úrovně houževnatosti materiálu na odolnost proti šíření trhliny u miniaturních těles. U materiálu, ve kterém dochází k významnému růstu trhliny po překročení limitních hodnot J integrálu (ocel Eurofer97), se výrazně projevuje ztráta constraintu a dochází k poklesu odolnosti proti šíření trhliny. Miniaturní tělesa pak vykazují významně nižší J R křivky oproti tělesům větší velikosti. Tento jev je v protikladu s chováním miniaturních těles v tranzitní oblasti. U materiálu, kdy k růstu trhliny dochází v oblasti platnosti J integrálu (ODS ocel MA956), jsou projevy ztráty constraintu velmi malé bez významného vlivu na odolnost proti šíření trhliny. Miniaturní tělesa v takovém případě poskytují srovnatelné J R křivky jako tělesa větších velikostí. Neméně podstatným přínosem práce je navržená metodika využívající mikromechanické modelování pro predikci J R křivky z malého množství materiálu.
Implementation of a plasticity model with advanced kinematic hardening rule for additively manufactured materials
Marek, René ; Parma, Slavomír ; Gabriel, Dušan ; Džugan, J.
Tato zpráva shrnuje postup prací na dílčím projektu DP 04_01_NPO “Emission-free technologies for local energy sources replacement” zahrnující vývoj modelů pro popis chování multi-materiálových 3D tištěných struktur řešený v konsorciu COMTES FHT, a.s., Ústav termomechaniky AV ČR, v.v.i. a PROINNO, a.s. Cílem projektu je vývoj materiálových modelů popisujících chování multi-materiálových komponent deponovaných metodou přímé depozice (DED) pří víceosém cyklickém zatěžování. \nVe zprávě je sestaven a použit model plasticity vhodný pro materiály připravené metodou aditivní výroby. Model využívá Hillovu podmínku plasticity, pokročilý vícesložkový model kinematického zpevnění a model isotropního zpevnění. Je zvolen asociovaný zákon tečení a implementace předpokládá teorii malých deformací. Pro zvolený model jsou uvedeny a diskutovány všechny konstitutivní vztahy a model je tak plně a jednoznačně formulován. Model je analyticky integrován pro speciální případ zatěžování a speciální volbu parametrů podmínky plasticity, konkrétně příčnou isotropii. Je prezentováno diskretizační schema pro numerickou integraci a procedury pro MKP implementaci modelu. U MKP implementace se předpokládá formulace v poli posunutí, konkrétně je pak cíleno na MKP řešič Abaqus a implementaci modelu pomocí rozhraní UMAT. Je prezentováno několik příkladů odezvy modelu na monotónní, jednoosé a víceosé cycklické zatěžovací trajektorie.\n
Určování lomově-mechanických charakteristik z podrozměrných zkušebních těles
Stratil, Luděk ; Džugan, Jan (oponent) ; Haušild, Petr (oponent) ; Dlouhý, Ivo (vedoucí práce)
Pro stanovení lomové houževnatosti jsou ve standardech stanoveny požadavky na velikost zkušebních těles. V případech limitovaného množství zkušebního materiálu nabízejí jednu z možností hodnocení houževnatosti miniaturní zkušební tělesa. Kvůli malým zatěžovaným objemům na čele trhliny dochází v těchto tělesech ke ztrátě constraintu, což vede k ovlivnění měřených hodnot houževnatosti a nesplnění velikostních požadavků na určení platných lomově mechanických charakteristik. Pro své malé rozměry se tato tělesa nacházejí na hranici ruční manipulace a silového rozsahu zkušebních strojů. Důležitou úlohou je pak při zvládnuté metodice přípravy, měření deformace a zkoušení těchto těles interpretace měřených hodnot lomově mechanických charakteristik a jejich případná korekce vzhledem k tělesům standardní velikosti. V oblasti horních prahových hodnot je u miniaturních těles stále nedostatečně řešena zvláště otázka kvantifikace a interpretace vlivu velikosti. Práce je svým zaměřením experimentálně výpočtovou studií zaměřenou na hodnocení vlivu velikosti zkušebního tělesa na lomovou houževnatost v oblasti horních prahových hodnot. Vliv velikosti byl kvantifikován zkoušením miniaturních těles a těles větší velikosti s cílem určení jejich J R křivek. V rámci práce byla věnována pozornost dvěma geometriím miniaturních zkušebních těles, miniaturnímu tělesu pro tříbodový ohyb a excentrické zatěžování. Jako experimentální materiál byly zvoleny pokročilé oceli vyvinuté pro jaderný a energetický průmysl, ocel Eurofer97 a ODS ocel MA956. Za účelem hodnocení a interpretace napěťově deformačního stavu na čele trhliny ve zkoušených tělesech pro ocel Eurofer97 byly realizovány simulace provedených testů pomocí metody konečných prvků a pomocí mikromechanického modelu tvárného porušení. V rámci srovnávání experimentů a simulací J R křivek byly odvozeny vzájemné závislosti geometrie tělesa a vhodné velikosti prvku v simulaci pro daný materiál. Na základě těchto vztahů byla navržena metodika, která může být použita k predikci J R křivky tělesa standardních rozměrů. Hlavním přínosem práce je zjištění vlivu úrovně houževnatosti materiálu na odolnost proti šíření trhliny u miniaturních těles. U materiálu, ve kterém dochází k významnému růstu trhliny po překročení limitních hodnot J integrálu (ocel Eurofer97), se výrazně projevuje ztráta constraintu a dochází k poklesu odolnosti proti šíření trhliny. Miniaturní tělesa pak vykazují významně nižší J R křivky oproti tělesům větší velikosti. Tento jev je v protikladu s chováním miniaturních těles v tranzitní oblasti. U materiálu, kdy k růstu trhliny dochází v oblasti platnosti J integrálu (ODS ocel MA956), jsou projevy ztráty constraintu velmi malé bez významného vlivu na odolnost proti šíření trhliny. Miniaturní tělesa v takovém případě poskytují srovnatelné J R křivky jako tělesa větších velikostí. Neméně podstatným přínosem práce je navržená metodika využívající mikromechanické modelování pro predikci J R křivky z malého množství materiálu.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.