Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Effect of body fluids on setting, structure and mechanical properties of phosphate bone cements
Bednaříková, Vendula ; Michlovská, Lenka (oponent) ; Vojtová, Lucy (vedoucí práce)
Presented diploma thesis describes the preparation and characterization of composite calcium-phosphate bone cements (CPCs). In the literature review properties and structure of tricalcium phosphates (TCPs) are described, including their interaction with body environment. In the experimental work, first of all, sample preparation technique was determined by experiments with setting reactions provided in ultrapure water environment. Optimal technique of setting CPC samples included memory foam setting mold, ending setting reactions by absolute cold ethanol and vacuum drying procedures. Consequently, the work describes the sample preparation and process of TCP bone cement setting in both natural (pig blood) and simulated body fluids (physiological, Hank´s and Ringer´s solutions). Morphology study by Scanning Electron Microscopy (SEM) was performed for samples set for 1 day, 1 week, 2 weeks and 1 month, due to the significant change in crystalline structure proving as well by X-ray diffraction (XRD) analysis by determining -TCP conversion to calcium-deficient hydroxyapatite (CDHA). Porosity investigated by X-ray computed microtomography (-CT) was slightly higher at sample set in natural blood. Mechanical properties of CPC samples measured by mechanical compression tests showed stable cement strength set in physiological solution already after 1 day while cements set in blood has shown still increasing strength even at 1 month. On contrary, strength of cement samples rapidly decreased after 2 weeks of setting in both Hank´s and Ringer´s solutions probably due to its slightly acidic pH accelerating CPC disintegration. As a result, setting environment has significant effect on resulting CPC properties and natural blood in comparison to simulated plasma had shown better CPC properties while more closely imitating the in vivo conditions.
Effect of body fluids on setting, structure and mechanical properties of phosphate bone cements
Bednaříková, Vendula ; Michlovská, Lenka (oponent) ; Vojtová, Lucy (vedoucí práce)
Presented diploma thesis describes the preparation and characterization of composite calcium-phosphate bone cements (CPCs). In the literature review properties and structure of tricalcium phosphates (TCPs) are described, including their interaction with body environment. In the experimental work, first of all, sample preparation technique was determined by experiments with setting reactions provided in ultrapure water environment. Optimal technique of setting CPC samples included memory foam setting mold, ending setting reactions by absolute cold ethanol and vacuum drying procedures. Consequently, the work describes the sample preparation and process of TCP bone cement setting in both natural (pig blood) and simulated body fluids (physiological, Hank´s and Ringer´s solutions). Morphology study by Scanning Electron Microscopy (SEM) was performed for samples set for 1 day, 1 week, 2 weeks and 1 month, due to the significant change in crystalline structure proving as well by X-ray diffraction (XRD) analysis by determining -TCP conversion to calcium-deficient hydroxyapatite (CDHA). Porosity investigated by X-ray computed microtomography (-CT) was slightly higher at sample set in natural blood. Mechanical properties of CPC samples measured by mechanical compression tests showed stable cement strength set in physiological solution already after 1 day while cements set in blood has shown still increasing strength even at 1 month. On contrary, strength of cement samples rapidly decreased after 2 weeks of setting in both Hank´s and Ringer´s solutions probably due to its slightly acidic pH accelerating CPC disintegration. As a result, setting environment has significant effect on resulting CPC properties and natural blood in comparison to simulated plasma had shown better CPC properties while more closely imitating the in vivo conditions.

Viz též: podobná jména autorů
6 Bednaříková, Veronika
2 Bednaříková, Věra
6 Bednáriková, Veronika
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.