National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Geometric linear and nonlinear problems of function spaces
Petráček, Petr ; Lukeš, Jaroslav (advisor) ; Aron, Richard M. (referee) ; Bobok, Jozef (referee)
Název práce: Geometrické lineární a nelineární problémy prostor· funkcí Autor: Petr Petráček Katedra: Katedra matematické analýzy 'kolitel: prof. RNDr. Jaroslav Lukeš, DrSc., Katedra matematické analýzy Abstrakt: Tato práce sestává ze čtyř vědeckých článk·. lánky prezentované v prvních dvou kapitolách se věnují teorii reálných a komplexních L1-preduál·. lánky prezentované v třetí a čtvrté kapitole jsou věnovány problematice line- ability a algebrability podmnožin reálných funkcí a měr. V Kapitole 1 předsta- vujeme charakterizaci komplexních L1-preduál· pomocí komplexního barycent- rického zobrazení. Tato charakterizace je přirozeným rozšířením charakterizace reálných L1 preduál· pocházející od Bednara a Laceyho. V Kapitole 2 odpoví- dáme na otázku položenou Laceym v roce 1973. Dokazujeme přitom existenci kompaktního prostoru K a uzavřeného podprostoru H ⊂ C(K) obsahujícího kon- stantní funkce, pro který platí ∂HK = K, H je maximální vzhledem k ∂HK a H není L1-preduál. V Kapitole 3 se věnujeme lineabilitě množin nikde mono- tonních znaménkových Radonových měr na Rd . Konkrétně dokazujeme existence vektorového prostoru dimenze c jehož každý nenulový prvek je nikde monotonní míra absolutně spojitá vzhledem k d-rozměrné Lebesgueově míře. Nadto dokazu- jeme, že existuje takový lineární prostor, který je hustý...
Geometric linear and nonlinear problems of function spaces
Petráček, Petr ; Lukeš, Jaroslav (advisor) ; Aron, Richard M. (referee) ; Bobok, Jozef (referee)
Název práce: Geometrické lineární a nelineární problémy prostor· funkcí Autor: Petr Petráček Katedra: Katedra matematické analýzy 'kolitel: prof. RNDr. Jaroslav Lukeš, DrSc., Katedra matematické analýzy Abstrakt: Tato práce sestává ze čtyř vědeckých článk·. lánky prezentované v prvních dvou kapitolách se věnují teorii reálných a komplexních L1-preduál·. lánky prezentované v třetí a čtvrté kapitole jsou věnovány problematice line- ability a algebrability podmnožin reálných funkcí a měr. V Kapitole 1 předsta- vujeme charakterizaci komplexních L1-preduál· pomocí komplexního barycent- rického zobrazení. Tato charakterizace je přirozeným rozšířením charakterizace reálných L1 preduál· pocházející od Bednara a Laceyho. V Kapitole 2 odpoví- dáme na otázku položenou Laceym v roce 1973. Dokazujeme přitom existenci kompaktního prostoru K a uzavřeného podprostoru H ⊂ C(K) obsahujícího kon- stantní funkce, pro který platí ∂HK = K, H je maximální vzhledem k ∂HK a H není L1-preduál. V Kapitole 3 se věnujeme lineabilitě množin nikde mono- tonních znaménkových Radonových měr na Rd . Konkrétně dokazujeme existence vektorového prostoru dimenze c jehož každý nenulový prvek je nikde monotonní míra absolutně spojitá vzhledem k d-rozměrné Lebesgueově míře. Nadto dokazu- jeme, že existuje takový lineární prostor, který je hustý...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.