Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Study of secondary phases in trip steel by advanced sem and afm techniques
Mikmeková, Šárka ; Ambrož, Ondřej ; Hegrová, J. ; Aoyama, T.
The paper aims to demonstrate a modern scanning electron microscope (SEM) as a powerful tool for visualization of the secondary phases in TRIP steel. The TRIP steel specimens prepared by various metallographic techniques were imaged by the SEM and the secondary phases presence was confirmed by an electron back-scattered diffraction (EBSD) technique. The chemical polishing by 5 % HF in H2O2 for 10 seconds results in selective etching for each individual phase, as confirmed by an atomic force microscopy (AFM) and hybrid AFM-in-SEM techniques. The phases are easily distinguishable in the SEM micrographs created by the low energy high take-off angle signal electrons. The proposed sample preparation technique together with special SEM imaging conditions enables us accurate analysis of distribution of secondary phases within the TRIP steel matrix and moreover, the retained austenite is distinguishable from the martensite phase.
Trip steel specimen preparation for advanced sem and EBSD
Ambrož, Ondřej ; Mikmeková, Šárka ; Hegrová, J. ; Aoyama, T.
Modern scanning electron microscopy (SEM) allows observations of specimens with high surface sensitivity. The surface sensitivity is significantly affected by the accelerating voltages. With the development of the scanning electron microscopy, the requirements for the surface quality of samples increase. Metallographic methods originally intended for light microscopy become insufficient. The problem occurs especially with multiphase materials having a fine-grained structure. The investigated TRIP steel consists of a ferritic-bainitic matrix, retained austenite and martensite phases. The sizes of the smallest phases are nanometer units. The volume of residual austenite was determined by X-ray diffraction. The basic preparation of all tested samples involved conventional metallographic grinding and very fine mechanical polishing. One sample was analysed in this state. Other samples were subsequently chemically polished, electropolished and chemical-mechanically polished. The specimens were observed in the SEM using a SE and a BSE detector at low energies immediately after the preparation. An EBSD was performed in the same areas to characterize the retained austenite. Topographical imaging by special AFM, integrated into the SEM, demonstrated that the mechanical polishing results in surface deformation and residual austenite is transformed. All other methods have their specifics and for modern sensitive SEM instruments it is necessary to optimize individual procedures.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.