Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Semianalytical approach to simulations in nanophotonics
Hrtoň, Martin ; Hohenester, Ulrich (oponent) ; Aizpurua, Javier (oponent) ; Šikola, Tomáš (vedoucí práce)
Numerical simulations have become an indispensable part of the design process in nanophotonics, which inevitably led to the development of specialized software dedicated to this task. Although there is a number of capable and commercially available options that can serve that purpose, many applications require data analysis that goes beyond the standardly offered analysis tools. The data post-processing lies at the focus of this thesis, with emphasis on the development of semianalytical models that are tailored specifically to each type of experiment, providing better insight into its physical background and improved agreement between theory and measurements. A major part of the thesis is dedicated to the plasmon enhanced electron paramagnetic resonance (PE EPR), a novel technique employing metallic antennas for enhancing the interaction between light and materials exhibiting magnetic spin transitions. Fundamental principles of this effect are laid down and a model facilitating rapid optimization of antenna arrays for thin film PE EPR spectroscopy is presented. Particular attention is paid to the current distribution and to advantages it offers when dealing with far-field projections and electromagnetic interaction between objects. This is further demonstrated on several applications, namely the phase imaging of metasurfaces using coherence controlled holographic microscope, the design of a metasurface-based fan-out element, and the multipolar analysis of far-fields generated by objects embedded within stratified media.
Semianalytical approach to simulations in nanophotonics
Hrtoň, Martin ; Hohenester, Ulrich (oponent) ; Aizpurua, Javier (oponent) ; Šikola, Tomáš (vedoucí práce)
Numerical simulations have become an indispensable part of the design process in nanophotonics, which inevitably led to the development of specialized software dedicated to this task. Although there is a number of capable and commercially available options that can serve that purpose, many applications require data analysis that goes beyond the standardly offered analysis tools. The data post-processing lies at the focus of this thesis, with emphasis on the development of semianalytical models that are tailored specifically to each type of experiment, providing better insight into its physical background and improved agreement between theory and measurements. A major part of the thesis is dedicated to the plasmon enhanced electron paramagnetic resonance (PE EPR), a novel technique employing metallic antennas for enhancing the interaction between light and materials exhibiting magnetic spin transitions. Fundamental principles of this effect are laid down and a model facilitating rapid optimization of antenna arrays for thin film PE EPR spectroscopy is presented. Particular attention is paid to the current distribution and to advantages it offers when dealing with far-field projections and electromagnetic interaction between objects. This is further demonstrated on several applications, namely the phase imaging of metasurfaces using coherence controlled holographic microscope, the design of a metasurface-based fan-out element, and the multipolar analysis of far-fields generated by objects embedded within stratified media.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.