National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Interactions and aggregation in hyaluronan-aminoacid-surfactant systems
Venerová, Tereza ; Velebný, Vladimír (referee) ; Pekař, Miloslav (advisor)
The effect of native hyaluronan addition on CMC of excluded surfactants (Tween 20, BETADET THC 2, SDS, CTAT a CTAB) in physiological solution (0,15 M NaCl) has been investigated by fluoresence spectroscopy with Pyrene and Nile red as probes. The greatest influence on CMC has been observed in systems with cationic surfactant. System of cetyltrimethylamonnium bromid has been closely studied. Solubilization experiments with a hydrophobic dye Sudan red has been realized and aggregation number of this system has been determinated via fluorescence quenching with cetylpyridinium chloride as quencher and Pyrene as fluorescence probe. Addition of hyaluronan (native or hydrophobicaly modified) reduces aggregation number of system.
Modification of hyaluronan by cholic acid and the using of these derivatives for carrier applications
Kvaková, Klaudia ; Márová, Ivana (referee) ; Velebný, Vladimír (advisor)
Amphiphilic biopolymers were synthesised using esterification of hyaluronic acid (HA) and cholic acid as hydrophobic segment. First, step of synthesis involves the activation of cholic acid carboxylic moiety by reaction with benzoylchloride and triethylamine (TEA) using as solvent tetrahydrofuran (THF). The formed mixed aliphatic/aromatic anhydride (intermediate) reacted at room temperature with hyaluronic acid catalysed by 4-(dimethylamino)pyridine (DMAP) and triethylamine and using as solvent water/THF. Hydrophobized product was identified as sodium cholyl hyaluronate (HA-CA) was obtained as product of the reaction. Structure of derivative was characterised by Nuclear magnetic resonance (NMR) and Fourier Transform - Infrared Spectroscopy (FT-IR). Size exclusion chromatography (SEC-MALLS) was used to determine molecular weight of derivative to evaluate any possible degradation of hyaluronan during modification. Rheological properties of these substances were also examined and confirmed non-degradation. The hydrophobized hyaluronic acid properties were evaluated for application as drug delivery system. Therefore, two non-polar compounds were encapsulated (coenzyme Q10 and curcumin). The size of formed polymeric micelles was characterised by dynamic light scattering (DLS).
Influencing of molecular mass of hyaluronic acid by fermentation process
Wikarská, Monika ; Jílková, Jana (referee) ; Velebný, Vladimír (advisor)
The biological function of hyaluronic acid (HA) – the polysaccharide, which consists of repeating units of N-actylglucosamine and glucuronic acid – is extremely broad and often contradictory, depending on its molecular weight (MW). The bacterial production provides HA of high molecular weight and purity. The objective of this thesis is to control the molecular weight of produced HA by the addition of hyaluronidases during the process of fermentation, resulting in reduction of viscosity of the medium followed by increase of yield. Hyaluronic acid was prepared by batch fermentation of the microorganism Streptococcus equi subsp. zooepidemicus. During the process of fermentation, the enzyme hyaluronate 4-glycanohydrolase (BTH) at various concentrations and different times of cultivation was added to bioreactors. The HA yield, the molecular weight and the polydispersity by the SEC-MALLS were monitored, together with the residual glucose concentration and the dynamic viscosity of the production medium. The formation of low and medium molecular weight HA was achieved. The addition of 10 U (BTH) / g (HA) had no significant effect on the molecular weight and therefore the HA function, but the corresponding drop of viscosity was noteworthy for the simplification of the product purification. Potential increase in HA yield was not confirmed because of the very low concentration of residual glucose and the method of precipitating low and medium MW HA.
Hyaluronan nanofibers
Linhartová, Beáta ; Velebný, Vladimír (referee) ; Pekař, Miloslav (advisor)
This bachelor´s thesis deals with the most common methods of producing nanofibres, it presents an overview of these techniques and briefly desribes common models. It shows their advantages and disadvantages and tries to follow the develompent of nanofibres. This theoretical part is followed by an experimental one which describes concrete example of producing nanofibres.
Studying of Gene Expression Involved in Hyaluronic Acid Synthesis in Streptococcus Equi Subsp. Zooepidemicus Using DNA Microarrays and Real-Time PCR
Hrudíková, Radka ; Šeda,, Ondřej (referee) ; Bobek,, Jan (referee) ; Velebný, Vladimír (advisor)
Hyaluronic acid (HA) is an important substance, which is mostly used in pharmaceutical and cosmetic industry. This substance is commonly found in the human body. HA is one of the factors contributing to virulence of microorganisms. Some bacterial strains produce hyaluronic acid in the form of a mucoid capsule that encapsulates the cell to protect bacteria against the immune system of the host organism. One of the main producers is the bacterial strain Streptococcus equi subsp. zooepidemicus. Contipro a.s. uses the strain CO4A to produce hyaluronic acid in large scale. The production strain was obtained by random mutagenesis by UV light. The aim of the work was to study changes in the genome, which led to a significant increase in hyaluronic acid production, using DNA microarray and real-time PCR (qPCR). The genome of the strain CO4A was sequenced and compared to reference ATCC35246 [1]. The size of the genome is 2,167,251 bp and 83 relevant variants (59 SNV and 34 indels) have been identified. Variants in coding regions were annotated and amino acid sequence changes were determined. In SNV mutations there was a change in the amino acid sequence in 45 cases. The change was identified in every case of indel mutations. The expression level of selected groups of genes was monitored in both strains by the method of DNA microarrays. A cascade of increased expression level of amino sugar metabolism genes leading to the synthesis of UDP-N-acetyl glucosamine was observed in strain CO4A (the increase in expression level of these genes compared to ATCC35246 was on average 28 %). Subsequently, the expression of selected genes was verified by qPCR. There was no significant difference in the expression level of the has operon genes of both strains. The effect of supplementation of the culture medium with N-acetylglucosamine (GlcNAc), which is one of the precursors of HA synthesis, was also studied by qPCR. A positive effect of the supplementation of the culture medium with external GlcNAc in the CO4A strain has been recorded. Also, the supplementation has positive effect on the yield of HA from the medium (increase in yield was on average by 17 %). GlcNAc has been shown to have a positive effect on the yield of HA in ATCC35246 strain as well (increase in yield was 9 % on average), but no significant changes in the expression levels were found in selected groups of genes in ATCC35246.
Nanospray processing of silver nanoparticles for formation of dried deposits
Týčová, Anna ; Jonas, Vladimír ; Přikryl, Jan ; Kotzianová, A. ; Velebný, V. ; Foret, František
Nanospray transfers liquid into an aerosol via electrostatic forces created between an emitter and a counter electrode. Herein, we present compact laboratory-made instrumentation for nanospray-processing of silver colloid. The instrumentation is based on the pressurized polysulfone chamber fixing a disposable vial with an immersed platinum electrode and a long fused silica capillary supplying the sprayed liquid to the emitter. The combination of low flow rates (70 nL/min) with a sharp emitter, fabricated on a 3D printed grinding station, resulted in a fine aerosol. The low volume of released droplets allowed full evaporation of water during their flight towards the counter electrode without any need for drying gas or the addition of volatile solvents. The constructed device was successfully used for the deposition of water-free silver colloid without any requirement of its pretreatment. The deposition of completely dried nanoparticles on planar substrates eliminated undesirable coffee ring effect and deposits of increased homogeneity could be obtained. Electron microscopy confirmed no significant changes in the character of nanospray-processed nanoparticles. Finally, we also investigated several approaches for the improvement of the surface density of nanoparticles on the substrate at preserved time scale.
Deposition of dried colloidal suspension via nanoelectrospray
Jonas, Vladimír ; Týčová, Anna ; Přikryl, Jan ; Kotzianová, A. ; Velebný, V. ; Foret, František
Electrospray is a relatively well-established tool for the deposition of nanoparticles. In this work, we use nanoelectrospray (nES) operating at flow rates down to tens of nanoliters per minute. As a result, the formed aerosol consists of very small droplets quickly drying during the flight towards a counter-electrode. Therefore, we obtained deposits of increased homogeneous distribution without an undesirable coffee-ring effect. Moreover, the character of the aerosol plume is only a few millimeters wide, so it allows good control over the deposit localization.
Studying of Gene Expression Involved in Hyaluronic Acid Synthesis in Streptococcus Equi Subsp. Zooepidemicus Using DNA Microarrays and Real-Time PCR
Hrudíková, Radka ; Šeda,, Ondřej (referee) ; Bobek,, Jan (referee) ; Velebný, Vladimír (advisor)
Hyaluronic acid (HA) is an important substance, which is mostly used in pharmaceutical and cosmetic industry. This substance is commonly found in the human body. HA is one of the factors contributing to virulence of microorganisms. Some bacterial strains produce hyaluronic acid in the form of a mucoid capsule that encapsulates the cell to protect bacteria against the immune system of the host organism. One of the main producers is the bacterial strain Streptococcus equi subsp. zooepidemicus. Contipro a.s. uses the strain CO4A to produce hyaluronic acid in large scale. The production strain was obtained by random mutagenesis by UV light. The aim of the work was to study changes in the genome, which led to a significant increase in hyaluronic acid production, using DNA microarray and real-time PCR (qPCR). The genome of the strain CO4A was sequenced and compared to reference ATCC35246 [1]. The size of the genome is 2,167,251 bp and 83 relevant variants (59 SNV and 34 indels) have been identified. Variants in coding regions were annotated and amino acid sequence changes were determined. In SNV mutations there was a change in the amino acid sequence in 45 cases. The change was identified in every case of indel mutations. The expression level of selected groups of genes was monitored in both strains by the method of DNA microarrays. A cascade of increased expression level of amino sugar metabolism genes leading to the synthesis of UDP-N-acetyl glucosamine was observed in strain CO4A (the increase in expression level of these genes compared to ATCC35246 was on average 28 %). Subsequently, the expression of selected genes was verified by qPCR. There was no significant difference in the expression level of the has operon genes of both strains. The effect of supplementation of the culture medium with N-acetylglucosamine (GlcNAc), which is one of the precursors of HA synthesis, was also studied by qPCR. A positive effect of the supplementation of the culture medium with external GlcNAc in the CO4A strain has been recorded. Also, the supplementation has positive effect on the yield of HA from the medium (increase in yield was on average by 17 %). GlcNAc has been shown to have a positive effect on the yield of HA in ATCC35246 strain as well (increase in yield was 9 % on average), but no significant changes in the expression levels were found in selected groups of genes in ATCC35246.
Influencing of molecular mass of hyaluronic acid by fermentation process
Wikarská, Monika ; Jílková, Jana (referee) ; Velebný, Vladimír (advisor)
The biological function of hyaluronic acid (HA) – the polysaccharide, which consists of repeating units of N-actylglucosamine and glucuronic acid – is extremely broad and often contradictory, depending on its molecular weight (MW). The bacterial production provides HA of high molecular weight and purity. The objective of this thesis is to control the molecular weight of produced HA by the addition of hyaluronidases during the process of fermentation, resulting in reduction of viscosity of the medium followed by increase of yield. Hyaluronic acid was prepared by batch fermentation of the microorganism Streptococcus equi subsp. zooepidemicus. During the process of fermentation, the enzyme hyaluronate 4-glycanohydrolase (BTH) at various concentrations and different times of cultivation was added to bioreactors. The HA yield, the molecular weight and the polydispersity by the SEC-MALLS were monitored, together with the residual glucose concentration and the dynamic viscosity of the production medium. The formation of low and medium molecular weight HA was achieved. The addition of 10 U (BTH) / g (HA) had no significant effect on the molecular weight and therefore the HA function, but the corresponding drop of viscosity was noteworthy for the simplification of the product purification. Potential increase in HA yield was not confirmed because of the very low concentration of residual glucose and the method of precipitating low and medium MW HA.
Modification of hyaluronan by cholic acid and the using of these derivatives for carrier applications
Kvaková, Klaudia ; Márová, Ivana (referee) ; Velebný, Vladimír (advisor)
Amphiphilic biopolymers were synthesised using esterification of hyaluronic acid (HA) and cholic acid as hydrophobic segment. First, step of synthesis involves the activation of cholic acid carboxylic moiety by reaction with benzoylchloride and triethylamine (TEA) using as solvent tetrahydrofuran (THF). The formed mixed aliphatic/aromatic anhydride (intermediate) reacted at room temperature with hyaluronic acid catalysed by 4-(dimethylamino)pyridine (DMAP) and triethylamine and using as solvent water/THF. Hydrophobized product was identified as sodium cholyl hyaluronate (HA-CA) was obtained as product of the reaction. Structure of derivative was characterised by Nuclear magnetic resonance (NMR) and Fourier Transform - Infrared Spectroscopy (FT-IR). Size exclusion chromatography (SEC-MALLS) was used to determine molecular weight of derivative to evaluate any possible degradation of hyaluronan during modification. Rheological properties of these substances were also examined and confirmed non-degradation. The hydrophobized hyaluronic acid properties were evaluated for application as drug delivery system. Therefore, two non-polar compounds were encapsulated (coenzyme Q10 and curcumin). The size of formed polymeric micelles was characterised by dynamic light scattering (DLS).

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.