National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Thermophilic microorganisms application to biodegradation
Varmužová, Tamara ; Márová, Ivana (referee) ; Babák, Libor (advisor)
This thesis is focused on study of biodegradability of modified polyurethane elastomeric films in synthetic medium with minerals and vitamins on tempered shaker by mixed thermophilic aerobic bacterial culture Bacillus and Thermus genera. In most cases addition of all used fillers (carboxymethyl cellulose, hydroxyethyl cellulose, acetylated cellulose, acetylated starch and glutein) led to increased biodegradability of elastomeric films with modifying agent in comparison with elastomeric films without modifying agent (referential). The growth of cultures was strongly increased in presence of elastomeric films modified by 10 % acetylated cellulose and 10 % carboxymethyl cellulose. Elastomeric film biodegradation mechanism included probably two stages: abiotic destruction of elastomeric films and consequent utilization of degradation products by bacterial culture.
Thermophilic microorganisms application to biodegradation
Varmužová, Tamara ; Márová, Ivana (referee) ; Babák, Libor (advisor)
This thesis is focused on study of biodegradability of modified polyurethane elastomeric films in synthetic medium with minerals and vitamins on tempered shaker by mixed thermophilic aerobic bacterial culture Bacillus and Thermus genera. In most cases addition of all used fillers (carboxymethyl cellulose, hydroxyethyl cellulose, acetylated cellulose, acetylated starch and glutein) led to increased biodegradability of elastomeric films with modifying agent in comparison with elastomeric films without modifying agent (referential). The growth of cultures was strongly increased in presence of elastomeric films modified by 10 % acetylated cellulose and 10 % carboxymethyl cellulose. Elastomeric film biodegradation mechanism included probably two stages: abiotic destruction of elastomeric films and consequent utilization of degradation products by bacterial culture.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.