National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Conjugated porous polymers derived from diethynylarenes by chain-growth polymerization and polycyclotrimerization
Slováková, Eva ; Sedláček, Jan (advisor) ; Merna, Jan (referee) ; Červený, Libor (referee)
4 ABSTRACT The synthesis has been described yielding a new type of rigid conjugated polymer networks which possess a high content of permanent micropores and macropores and exhibit high surface areas up to 1469 m2/g. The networks have been prepared via chain-growth coordination polymerization catalysed with insertion catalysts based on Rh complexes. This polymerization has been newly applied to bifunctional acetylenic monomers of diethynylarene type (1,4-diethynylbenzene, 1,3-diethynylbenzene and 4,4'-diethynylbiphenyl). The covalent structure of the networks consists of the polyacetylene main chains densely connected by arylene struts. The W and Mo metathesis catalysts have been revealed as inefficient for the synthesis of these networks. The increase in the polymerization temperature and time has been shown to affect positively the content and the diameter (up to 22 nm) of the mesopores in the networks. A mechanism has been proposed that explains the mesopores formation as a result of mutual knitting of small particles of the microporous polymer. The application of emulsion polymerization technique allowed to prepare texturally hierarchical polyacetylene networks possessing interconnected open macropores (diameter up to 4,8 μm) the walls of which exhibited micro/mesoporous texture. It was demonstrated...
Homogeneous and heterogeneous titanium complexes and their use for selective ethylene trimerization to 1-hexene
Hodík, Tomáš ; Pinkas, Jiří (advisor) ; Merna, Jan (referee)
This diploma thesis is focused on the design and synthesis of new half-sandwich titanium complexes for anchoring to selected supports (SiO2, SBA-15) and the study of their catalytic activity and selectivity in ethylene trimerization to 1-hexene. The synthetic strategy of half-sandwich titanium complexes with a suitable leaving group for direct anchoring through Ti−O bond was carried out (Cl, Oi-Pr). In addition, the titanium complexes with pendant alkenyl group were prepared and utilised for anchoring to a SiMe2H modified support by Pt-catalysed hydrosilylation reaction. Prepared compounds were characterised by standard spectroscopic methods (IR, NMR, MS). The heterogeneous systems were characterised by MAS NMR and IR spectroscopy, powder XRD, ICP-OES, TGA and the textural parameters were determined from nitrogen adsorption/desorption isotherms. For all prepared materials was studied the catalytic activity for ethylene trimerization and the selectivity to 1-hexene.
Homogeneous and heterogeneous titanium complexes and their use for selective ethylene trimerization to 1-hexene
Hodík, Tomáš ; Pinkas, Jiří (advisor) ; Merna, Jan (referee)
This diploma thesis is focused on the design and synthesis of new half-sandwich titanium complexes for anchoring to selected supports (SiO2, SBA-15) and the study of their catalytic activity and selectivity in ethylene trimerization to 1-hexene. The synthetic strategy of half-sandwich titanium complexes with a suitable leaving group for direct anchoring through Ti−O bond was carried out (Cl, Oi-Pr). In addition, the titanium complexes with pendant alkenyl group were prepared and utilised for anchoring to a SiMe2H modified support by Pt-catalysed hydrosilylation reaction. Prepared compounds were characterised by standard spectroscopic methods (IR, NMR, MS). The heterogeneous systems were characterised by MAS NMR and IR spectroscopy, powder XRD, ICP-OES, TGA and the textural parameters were determined from nitrogen adsorption/desorption isotherms. For all prepared materials was studied the catalytic activity for ethylene trimerization and the selectivity to 1-hexene.
Conjugated porous polymers derived from diethynylarenes by chain-growth polymerization and polycyclotrimerization
Slováková, Eva ; Sedláček, Jan (advisor) ; Merna, Jan (referee) ; Červený, Libor (referee)
4 ABSTRACT The synthesis has been described yielding a new type of rigid conjugated polymer networks which possess a high content of permanent micropores and macropores and exhibit high surface areas up to 1469 m2/g. The networks have been prepared via chain-growth coordination polymerization catalysed with insertion catalysts based on Rh complexes. This polymerization has been newly applied to bifunctional acetylenic monomers of diethynylarene type (1,4-diethynylbenzene, 1,3-diethynylbenzene and 4,4'-diethynylbiphenyl). The covalent structure of the networks consists of the polyacetylene main chains densely connected by arylene struts. The W and Mo metathesis catalysts have been revealed as inefficient for the synthesis of these networks. The increase in the polymerization temperature and time has been shown to affect positively the content and the diameter (up to 22 nm) of the mesopores in the networks. A mechanism has been proposed that explains the mesopores formation as a result of mutual knitting of small particles of the microporous polymer. The application of emulsion polymerization technique allowed to prepare texturally hierarchical polyacetylene networks possessing interconnected open macropores (diameter up to 4,8 μm) the walls of which exhibited micro/mesoporous texture. It was demonstrated...
LC-NMR Analysis of Phenylsilane Polymers
Pinkas, Jiří ; Merna, J. ; Sýkora, Jan
We report the analysis of dehydrocoupling polymerization reactions of phenylsilane via on-flow LC-NMR experiment. The successful separation was achieved by isocratic elution of acetonitrile and aceton (80:20). The separation was solely monitored by 1H NMR detection. The properties of the polymeric product depend on the catalytical system. The products can differ in the molar weight distribution, degree of branching and amount of cyclic and rearranged products. In our particular cases, the weight average molar mass (Mw) varies from several silane units up to 4100 g.mol-1. The branching of polysilanes is monitored by 29Si{1H} INEPT experiment with the polarization transfer from the ortho hydrogen (J~7 Hz). The connectivity within branched unit was established via 1H à 29Si-29Si INEPT-INADEQUATE experiment.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.