National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Evolutionary development of robotic organisms
Leibl, Marek ; Mráz, František (advisor) ; Holan, Tomáš (referee)
This work introduces a system for an evolutionary design of virtual organisms capable of effective movement in a simulated environment. The morphology and the control system are simultaneously developed by an evolutionary algorithms. The system also allows to design organisms in an editor and evolution of the control system with an immutable morphology. The quality evaluation and viewing of evolved organisms is done in a simulated 3D physical environment. The work put stress on the optimization of time and computing complexity of the evolutionary process. This optimization is achieved by using symmetry of organisms and their movement with HyperNEAT-generative encoding of synaptic values. Further optimization is achieved by limiting the variety of mutual module connections and focusing on the harmonic movement of organisms.
Modular and ontogenetic evolution of virtual organisms
Leibl, Marek ; Mráz, František (advisor) ; Šmíd, Jakub (referee)
Increase of computational power and development of new methods in artificial intelligence allow these days many real-world problems to be solved automatically by a~computer program without human interaction. This includes automatized design of walking robots in a~physical virtual environment that can eventually result in construction of real robots. This work compares two different approaches to evolve virtual robotic organisms: artificial ontogeny, where the organism first grows using an~artificial ontogenetic process, and more direct methods. Furthermore, it proposes a~novel approach to evolve virtual robotic organisms: Hypercube-based artificial ontogeny that is combination of artificial ontogeny and Hypercube-based neuroevolution of augmenting topologies (HyperNEAT). Powered by TCPDF (www.tcpdf.org)
Modular and ontogenetic evolution of virtual organisms
Leibl, Marek ; Mráz, František (advisor) ; Šmíd, Jakub (referee)
Increase of computational power and development of new methods in artificial intelligence allow these days many real-world problems to be solved automatically by a~computer program without human interaction. This includes automatized design of walking robots in a~physical virtual environment that can eventually result in construction of real robots. This work compares two different approaches to evolve virtual robotic organisms: artificial ontogeny, where the organism first grows using an~artificial ontogenetic process, and more direct methods. Furthermore, it proposes a~novel approach to evolve virtual robotic organisms: Hypercube-based artificial ontogeny that is combination of artificial ontogeny and Hypercube-based neuroevolution of augmenting topologies (HyperNEAT). Powered by TCPDF (www.tcpdf.org)
Evolutionary development of robotic organisms
Leibl, Marek ; Mráz, František (advisor) ; Holan, Tomáš (referee)
This work introduces a system for an evolutionary design of virtual organisms capable of effective movement in a simulated environment. The morphology and the control system are simultaneously developed by an evolutionary algorithms. The system also allows to design organisms in an editor and evolution of the control system with an immutable morphology. The quality evaluation and viewing of evolved organisms is done in a simulated 3D physical environment. The work put stress on the optimization of time and computing complexity of the evolutionary process. This optimization is achieved by using symmetry of organisms and their movement with HyperNEAT-generative encoding of synaptic values. Further optimization is achieved by limiting the variety of mutual module connections and focusing on the harmonic movement of organisms.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.