National Repository of Grey Literature 7 records found  Search took 0.00 seconds. 
Invariant measures for dissipative stochastic differential equations
Lavička, Karel ; Seidler, Jan (advisor) ; Maslowski, Bohdan (referee)
The main topic of this Thesis is a new simplified proof of the Sunyach theorem that provides suffici- ent conditions for existence and uniqueness of an invariant measure for a Markov kernel on a complete separable metric space equipped with its Borel σ-algebra. Weak convergence of measures following from Sunyach's theorem is strengthened to convergence in the total variation norm provided that the Markov kernel is strong Feller. Furthermore, sufficient conditions for geometric ergodicity are stated. Another topic treated is the strong Feller property: its characterization by absolute measurability and uniform integrability and derivation of some other sufficient conditions.
Invariant measures for dissipative stochastic differential equations
Lavička, Karel
The main topic of this Thesis is a new simplified proof of the Sunyach theorem that provides suffici- ent conditions for existence and uniqueness of an invariant measure for a Markov kernel on a complete separable metric space equipped with its Borel σ-algebra. Weak convergence of measures following from Sunyach's theorem is strengthened to convergence in the total variation norm provided that the Markov kernel is strong Feller. Furthermore, sufficient conditions for geometric ergodicity are stated. Another topic treated is the strong Feller property: its characterization by absolute measurability and uniform integrability and derivation of some other sufficient conditions.
Vertex coloring algorithms in scheduling problems under uncertainty
Hájek, Štěpán ; Branda, Martin (advisor) ; Lavička, Karel (referee)
This thesis concerns solutions to problems that arise in optimizing fixed interval scheduling under situations of uncertainty such as when there are random delays in job process times. These problems can be solved by using a vertex coloring with random edges and problems can be formulated using integer linear, quadratic and stochastic programming. In this thesis is propo- sed a new integer linear formulation. Under certain conditions there is proved its equivalence with stochastic formulation, where is maximized the schedule reliability. Moreover, we modified the proposed formulation to obtain bet- ter corresponding to real life situations. In a numerical study we compared computational time of individual formulations. It turns out that the propo- sed formulation is able to solve scheduling problems considerably faster than other formulations. 1
Invariant measures for dissipative stochastic differential equations
Lavička, Karel
The main topic of this Thesis is a new simplified proof of the Sunyach theorem that provides suffici- ent conditions for existence and uniqueness of an invariant measure for a Markov kernel on a complete separable metric space equipped with its Borel σ-algebra. Weak convergence of measures following from Sunyach's theorem is strengthened to convergence in the total variation norm provided that the Markov kernel is strong Feller. Furthermore, sufficient conditions for geometric ergodicity are stated. Another topic treated is the strong Feller property: its characterization by absolute measurability and uniform integrability and derivation of some other sufficient conditions.
Invariant measures for dissipative stochastic differential equations
Lavička, Karel ; Seidler, Jan (advisor) ; Maslowski, Bohdan (referee)
The main topic of this Thesis is a new simplified proof of the Sunyach theorem that provides suffici- ent conditions for existence and uniqueness of an invariant measure for a Markov kernel on a complete separable metric space equipped with its Borel σ-algebra. Weak convergence of measures following from Sunyach's theorem is strengthened to convergence in the total variation norm provided that the Markov kernel is strong Feller. Furthermore, sufficient conditions for geometric ergodicity are stated. Another topic treated is the strong Feller property: its characterization by absolute measurability and uniform integrability and derivation of some other sufficient conditions.

See also: similar author names
3 Lavická, Kristýna
Interested in being notified about new results for this query?
Subscribe to the RSS feed.