National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Study on gene expression in Cupriavidus necator and other selected polyhydroxyalkanoates producers
Centnerová, Radmila ; Šedrlová, Zuzana (referee) ; Pernicová, Iva (advisor)
The aim of this bachelor thesis was study on gene expression in bacterium Cupriavidus necator H16 that is known as a model bacterium for the metabolism of polyhydroxyalkanoates. In the first part of this thesis, the optimalization of RT-qPCR method was performed. The optimized method was implemented on the study on gene expression. Furthermore, there were tested several commercial isolation kits for the genomic DNA isolation, the RNA isolation and the reverse transcription of the RNA and synthesis of the complementary DNA. These kits were compared in order to choose the one that would have provided the most relevant results and also the kit handling would have been simple and safe. There were different results accomplished for all kits. This means the kit used for the isolation had unneglectable impact on the quality of the isolated nucleic acid and therefore also on the success of the whole measurement. Isolated genomic DNA was used for optimalization and calibration. Isolated RNA and complementary DNA were used in the second part of the thesis. In this part, the studied bacterium was cultivated under various conditions and carbon sources. Subsequently, the optimized RT-qPCR method was performed and used for study on gene expression of chosen genes involved in the biosynthesis of polyhydroxyalkanoates. There were more significant differences in gene expression observed for fructose as a carbon source, compared to -butyrolacton as a carbon source. The greatest increase of the gene expression for fructose as a carbon source was measured for gene encoding 4-hydroxyphenylacetate-3-hydroxylase. There were more considerable differences in gene expression observed for -butyrolacton as a carbon source only for gene encoding 4-hydroxybutyrate dehydrogenase. Therefore, the choice of the carbon source impacts fundamentally the gene expression.
Study on gene expression in Cupriavidus necator and other selected polyhydroxyalkanoates producers
Centnerová, Radmila ; Šedrlová, Zuzana (referee) ; Pernicová, Iva (advisor)
The aim of this bachelor thesis was study on gene expression in bacterium Cupriavidus necator H16 that is known as a model bacterium for the metabolism of polyhydroxyalkanoates. In the first part of this thesis, the optimalization of RT-qPCR method was performed. The optimized method was implemented on the study on gene expression. Furthermore, there were tested several commercial isolation kits for the genomic DNA isolation, the RNA isolation and the reverse transcription of the RNA and synthesis of the complementary DNA. These kits were compared in order to choose the one that would have provided the most relevant results and also the kit handling would have been simple and safe. There were different results accomplished for all kits. This means the kit used for the isolation had unneglectable impact on the quality of the isolated nucleic acid and therefore also on the success of the whole measurement. Isolated genomic DNA was used for optimalization and calibration. Isolated RNA and complementary DNA were used in the second part of the thesis. In this part, the studied bacterium was cultivated under various conditions and carbon sources. Subsequently, the optimized RT-qPCR method was performed and used for study on gene expression of chosen genes involved in the biosynthesis of polyhydroxyalkanoates. There were more significant differences in gene expression observed for fructose as a carbon source, compared to -butyrolacton as a carbon source. The greatest increase of the gene expression for fructose as a carbon source was measured for gene encoding 4-hydroxyphenylacetate-3-hydroxylase. There were more considerable differences in gene expression observed for -butyrolacton as a carbon source only for gene encoding 4-hydroxybutyrate dehydrogenase. Therefore, the choice of the carbon source impacts fundamentally the gene expression.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.