National Repository of Grey Literature 9 records found  Search took 0.00 seconds. 
Study of evolution of insect pheromone biosynthetic fatty acyl desaturases
Buček, Aleš
Insects account for more than one million of described species with an ecological and economic impact disproportional to their minute body size. Among the factors which have contributed to their evolutionary success, insect secondary metabolites such as defensive compounds and chemical signals are regarded to play a major role. This thesis aims at uncovering the molecular mechanisms underlying evolution of ubiquitous insect secondary metabolites - sex pheromones (SPs), i.e. chemical signals mediating mate finding and mating between individuals of the same species. The thesis focuses on a class of oxidoreductase enzymes, membrane fatty acid desaturases (mFADs), which introduce double bonds into hydrocarbon chains of fatty acyls and thus produce precursors of unsaturated fatty acid- derived SPs. mFADs are involved in SP biosynthesis in e.g. moths (Lepidoptera), flies (Diptera), cockroaches and termites (Blattodea), wasps and bees (Hymenoptera) - some of the most species-rich insect orders. Since SPs are principal to species reproductive isolation, uncovering the molecular basis of insect SP biosynthesis holds promises to contribute to answering fundamental questions concerning the insect ecology and evolution. The insect mFADs with diverse enzymatic specificities also represent a naturally available...
Study of evolution of insect pheromone biosynthetic fatty acyl desaturases
Buček, Aleš ; Pichová, Iva (advisor) ; Žďárek, Jan (referee) ; Doležel, David (referee)
Insects account for more than one million of described species with an ecological and economic impact disproportional to their minute body size. Among the factors which have contributed to their evolutionary success, insect secondary metabolites such as defensive compounds and chemical signals are regarded to play a major role. This thesis aims at uncovering the molecular mechanisms underlying evolution of ubiquitous insect secondary metabolites - sex pheromones (SPs), i.e. chemical signals mediating mate finding and mating between individuals of the same species. The thesis focuses on a class of oxidoreductase enzymes, membrane fatty acid desaturases (mFADs), which introduce double bonds into hydrocarbon chains of fatty acyls and thus produce precursors of unsaturated fatty acid- derived SPs. mFADs are involved in SP biosynthesis in e.g. moths (Lepidoptera), flies (Diptera), cockroaches and termites (Blattodea), wasps and bees (Hymenoptera) - some of the most species-rich insect orders. Since SPs are principal to species reproductive isolation, uncovering the molecular basis of insect SP biosynthesis holds promises to contribute to answering fundamental questions concerning the insect ecology and evolution. The insect mFADs with diverse enzymatic specificities also represent a naturally available...
Study of evolution of insect pheromone biosynthetic fatty acyl desaturases
Buček, Aleš
Insects account for more than one million of described species with an ecological and economic impact disproportional to their minute body size. Among the factors which have contributed to their evolutionary success, insect secondary metabolites such as defensive compounds and chemical signals are regarded to play a major role. This thesis aims at uncovering the molecular mechanisms underlying evolution of ubiquitous insect secondary metabolites - sex pheromones (SPs), i.e. chemical signals mediating mate finding and mating between individuals of the same species. The thesis focuses on a class of oxidoreductase enzymes, membrane fatty acid desaturases (mFADs), which introduce double bonds into hydrocarbon chains of fatty acyls and thus produce precursors of unsaturated fatty acid- derived SPs. mFADs are involved in SP biosynthesis in e.g. moths (Lepidoptera), flies (Diptera), cockroaches and termites (Blattodea), wasps and bees (Hymenoptera) - some of the most species-rich insect orders. Since SPs are principal to species reproductive isolation, uncovering the molecular basis of insect SP biosynthesis holds promises to contribute to answering fundamental questions concerning the insect ecology and evolution. The insect mFADs with diverse enzymatic specificities also represent a naturally available...

See also: similar author names
8 Buček, A.
4 Buček, Antonín
2 Buček, Arnošt
Interested in being notified about new results for this query?
Subscribe to the RSS feed.