National Repository of Grey Literature 32 records found  beginprevious13 - 22next  jump to record: Search took 0.00 seconds. 
Přístupy k visualizaci obrazů 3D struktur získaných konfokálním mikroskopem
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Hána, K. ; Smrčka, P.
Laser scanning confocal microscopes are capable to focus a laser beam into a layer of an investigated biological specimen, and by the gradual scanning of this layer they acquire an optical section. By consecutive scanning of all preset layers of the specimen we obtain a stack of optical sections, i.e. a 3D digital representation of the specimen. In the presented study we focus on volume reconstruction of large biological tissues, i.e. tissues greater than field of view and/or thicker than maximal depth of scanning of a confocal microscope. As a result of volume reconstruction we obtain a high resolution 3D image of the biological specimen. 3D visualization is offered either by our Rapid3D software package suited for three-dimensional reconstruction and visualization of biomedical images, or Ellipse modular software package devoted to biological image processing (created by ViDiTo company, Slovakia)
Prostředky pro vizualizaci obrazů velkých třídimenzionálních objektů v biologii
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
Three-dimensional images of biological objects or structures recorded by modern acquisition tools like a confocal laser scanning microscope are visualized for their evaluation, analysis and measurement. We report about possibilities for three-dimensional visualization which are offered by either our Rapid3D software package suited for three-dimensional reconstruction and visualization of bio-medical images or Ellipse modular software package devoted to biological image processing (ViDiTo company, Slovakia)
Analysis of confocal images of fibres
Janáček, Jiří ; Saxl, Ivan ; Mao, X. W. ; Kubínová, Lucie
Aim of the paper is analysis of 3D confocal images of blood capillaries by digital filters, segmentation and medial axis extraction
Nástroje pro trojrozměrnou vizualizaci struktur v biologii
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
By consecutive scanning of layers of the biological specimen by a confocal microscope we obtain a stack of optical sections, i.e. a 3D digital representation of the specimen. Our research focuses, on volume reconstruction of large biological tissues, i.e. tissues greater than field of view and/or thicker than maximal depth of scanning of the confocal microscope. As a result of volume reconstruction we obtain a high resolution 3D image of the biological specimen. In order to visualize 3D objects on 2D computer screens we developed several tools including visualization by a specialized VolumePro board and by using consumer graphics cards supporting DirectX and OpenGL
Objemová rekonstrukce velkých biologických tkáňových vzorků
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
Volume reconstruction is a technique for visualization of a biological specimen which is greater than the field of view of a used optical instrument - a confocal laser scanning microscope in our case. The first step of volume reconstruction is acquisition of sets of digital volume images (spatial tiles which overlap) from all studied physical slices. The second step is horizontal merging of overlapping spatial tiles of the same physical slice (mosaicking). The third reconstruction step is vertical merging of digital volumes of successive physical slices of the specimen. The resulting large digital volumes are visualized using a VolumePro hardware board that offers real-time 3D volume rendering. In this paper we show a reconstruction of a chick embryonic kidney
Objemová vizualizace velkých biologických tkáňových vzorků
Čapek, Martin ; Kubínová, Lucie ; Janáček, Jiří ; Hána, K. ; Smrčka, P.
We apply volume reconstruction for visualization of a biological specimen greater than the field of view of a confocal laser scanning microscope. Prior to the volume reconstruction, large specimens are cut into thin physical slices. The first step of volume reconstruction is acquisition of digital volume images (spatial tiles which overlap) from all studied physical slices. The second step is horizontal merging of overlapping spatial tiles of the same physical slice using a registration algorithm based on a mutual information and translation. The third reconstruction step is vertical merging of digital volumes of successive physical slices using an elastic registration algorithm based on B-splines. The resulting large digital volumes are visualized by a VolumePro hardware board that provides volume rendering in real-time. In this paper we show a reconstruction of a chick embryonic kidney.
Použití konfokální mikroskopie a stereologických metod při měření geometrických charakteristik mezofylu čerstvých smrkových jehlic: doladění metody
Lhotáková, Z. ; Albrechtová, Jana ; Janáček, Jiří ; Kubínová, Lucie
3D structure of Norway spruce needle mesophyll was studied by confocal microscopa and stereological methods (fakir, point counting, Cavalieri principle). Fresh hand sections 80 micrometers thick proved to be most suitable. The measurement should be restricted only to the middle region of the optical section series
3D vizualizace velkých biologických vzorků nasnímaných konfokálním mikroskopem
Čapek, Martin ; Janáček, Jiří ; Karen, Petr ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
Digital volume reconstruction is a technique for rendering and visualization of a biological specimen which is greater than the field of view of a used optical instrument - a confocal laser scanning microscope in our case. Prior to the volume reconstruction, large biological specimens are cut to thin physical slices. The first step of volume reconstruction is acquisition of sets of digital volume images (spatial tiles which overlap) from all studied physical slices. The second step is composition of neighbouring spatial tiles of the same physical slice. The third reconstruction step is registration and merging of digital volumes of neighbouring physical slices of the specimen. The resulting large digital volumes are rendered and visualized using a VolumePro hardware board that offers real-time 3D volume rendering. In this paper we show a reconstruction of a chick embryonic kidney
Stereologická metoda pro odhad povrchu tylakoidů chloroplastu
Kubínová, Lucie ; Kutík, J.
The stereological method using “local vertical windows” applied to the estimation of thylakoid surface area in the chloroplast volume, based on evaluation of chloroplast electron micrographs is presented. The method is demonstrated on the study of chloroplast ultrastructure in the leaves of plants of CE704 maize (Zea mays L.) line, developing in control and chilling conditions
Rozdíly v kapilárním zásobení různých typů svalových vláken
Eržen, I. ; Kubínová, Lucie ; Janáček, Jiří ; Čebašek, V. ; Ribarič, S.
Capillary network in slow soleus and fast extensor digitorum longus control, denervated and reinnervated rat muscles was compared using stereology and confocal microscopy

National Repository of Grey Literature : 32 records found   beginprevious13 - 22next  jump to record:
See also: similar author names
1 Kubínová, Lenka
Interested in being notified about new results for this query?
Subscribe to the RSS feed.