National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 

Warning: Requested record does not seem to exist.
Molecular mechanism of quality control during snRNP biogenesis
Klimešová, Klára ; Staněk, David (advisor) ; Krásný, Libor (referee) ; Vomastek, Tomáš (referee)
The spliceosome is one of the largest and most dynamic molecular machines in the cell. The central part of the complex is formed by five small nuclear ribonucleoproteins (snRNPs) which are generated in a multi-step biogenesis pathway. Moreover, the snRNPs undergo extensive rearrangements during the splicing and require reassembly after every intron removal. Both de novo assembly and post-splicing recycling of snRNPs are guided and facilitated by specific chaperones. Here, I reveal molecular details of function of two snRNP chaperones, SART3 and TSSC4. While TSSC4 is a previously uncharacterized protein, SART3 has been described before as a U6 snRNP-specific factor which assists in association of U6 and U4 particles into di-snRNP, and is important for the U4/U6 snRNP recycling. However, the mechanism of its function has been unclear. Here, I provide an evidence that SART3 interacts with a post-splicing complex and propose that SART3 could promote its disassembly. Our data further suggest that SART3 binds U6 snRNP already within the post-splicing complex and thus participates in the whole recycling phase of U6 snRNP. Then, I show that TSSC4 is a novel U5 snRNP-specific chaperone which promotes an assembly of U5 and U4/U6 snRNPs into a splicing-competent tri-snRNP particle. We identified...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.