National Repository of Grey Literature 71 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Optimization of hydrogel carrier for assessment of antimicrobial activity of biocidal surfaces
Antálek, Adam ; Jančovičová, Viera (referee) ; Králová, Marcela (advisor)
This diploma thesis deals with the optimization of the composition and properties of hydrogels as carriers of microbial populations for the evaluation of the antimicrobial effects. There are standardized procedures for assessing antimicrobial surfaces, but they have shortcomings, such as the necessity of testing exclusively under laboratory conditions. In the presented work, a new evaluation methodology is proposed, which utilizes a modified resazurin test and hydrogels as platforms for bacterial seeding, enabling the assessment of the investigated antimicrobial surface. The composition and properties of hydrogel carriers were successfully optimized with respect to their swelling and mechanical properties, thereby improving recovery compared to standardized procedures. Tests on antimicrobial materials showed that the bacteria used on hydrogels continued to grow, rendering the use of composite hydrogels for this application impractical.
Study on relaxation properties of hydrogels using rheological techniques
Lorenc, Pavel ; Klučáková, Martina (referee) ; Smilek, Jiří (advisor)
Submitted bachelor’s thesis deals with the study of relaxation and time stress of viscoelastic substances (hydrogels) using selected rheological techniques, especially with regard to oscillation tests. Hydrogels with different types of crosslinking were prepared and their properties were compared during the measurement. Agarose hydrogels (physically), alginate hydrogels (physicochemically), polyvinyl alcohol hydrogels (chemically) and hyaluronic acid hydrogels (ionically). In this bachelor's thesis, methods for measuring the relaxation properties of these hydrogels using a rheometer were designed and subsequently applied. We examined the relaxation properties of hydrogels using time-dependent tests that examined changes in amplitude over time. We performed a test that had 3 intervals, in which we monitored the response of hydrogels to the changes by changing the amplitudes of deformation with time. The relaxation properties of these hydrogels were studied, which showed significant differences in the behavior of hydrogels in measurements.By these methods, it was found that the structure of hydrogels and concentrations have an influence on relaxation. From the measured results, it was shown that the best relaxing properties have chemically crosslinked polyvinyl alcohol hydrogel, the lowest ability to relax was shown by physico-chemically crosslinked alginate hydrogel.The results from the measured data were finally compared, assessed and commented on the differences between the individual hydrogels.
Hydrogels with incorporated vesicular systems
Kalendová, Lucie ; Pekař, Miloslav (referee) ; Venerová, Tereza (advisor)
This bachelor thesis deals with the incorporation of vesicular systems into polysaccharide – based hydrogels. The chosen vesicular systems were Ion Pair Amphiphile vesicles (IPA), which consist of cetrimethylammonium bromide, sodium dodecyl sulfate, dioctadecyldimethylammonium chloride and cholesterol. The work is divided into two parts. In the first part, interactions between IPA vesicles and sodium hyaluronan and interactions between IPA vesicles and sodium polystyrene sulfonate were studied. Even though interactions occured, it was not possible to prepare a hydrogel based on these interactions. The second part of this work deals with incorporation of IPA vesicles into an agarose – based gel when heated. Particles of two different concentrations (1 mmol·l1 and 2 mmol·l1) were used. The effect of the IPA particles on the properties of the gel was observed with rheological measurements. The results showed that the gel with incorporated particles has a longer linear viscoelastic region and that there were no interactions between the IPA particles and the gel. The particles only fill the gaps of the gel network. Different behaviour within the gels with different concentrations of IPA vesicles was not observed.
Study of transport processes using microrheological techniques in hydrogels
Píšová, Denisa ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
This diploma thesis is focused on the determintaion of viscoelastic properties of agarose hydrogels containing different polyelectrolytes by microrheological and macrorheological techniques. From microrheological techniques the dynamic light scattering was used. Firstly, the influence of different polyelectrolyte volume was studied. Then the effect of variously charged polyelectrolyte and ionic strenght on microrheological properties of agarose hydrogels were determined. Classic rheology was used to compare the results obtained using the DLS microrheology method. Finally, the results from macro- and microrheology were correlated with each other.
The utilization of atomic force microscopy for study on hydrogels
Lišková, Kateřina ; Kalina, Michal (referee) ; Smilek, Jiří (advisor)
The presented bachelor thesis deals with the study of atomic force microscopy (AFM), especially the optimization of the measuring procedure for imaging the surface of variously crosslinked hydrogels in the hydrated state. The most attention was given to the physically crosslinked polysaccharide hydrogel (termoreversible agarose) in hydrated state, where the surface of the samples with mass concentration of 4, 2, 1, 0,75 and 0,5 % was measured. Subsequently, the surface of the ionically crosslinked 2 % alginate gel with calcium ions was measured. Based on a literature research, measurements were performed in water using the method of quantitative imaging (QITM Advanced Imaging), which is especially suitable for soft samples with uneven surfaces. Multiple cantilever were tested for measurement, finally the SNL-10 cantilever was selected, which showed versatility for imaging samples in any measuring environment, especially aqueous. The pore sizes of the agarose hydrogels were monitored by image analysis ImageJ. For the measurement of hydrogels in the swollen state, the procedure of measuring their surface using atomic force microscopy has been optimized, but for different types of hydrogels, individual optimization of both preparation and instrument setup will be required.
Optimalization of techniques of microrheology for characterization of biopolymer hydrogels
Dušenková, Alica ; Smilek, Jiří (referee) ; Sedláček, Petr (advisor)
The main aim of the bachelor thesis is optimalization of microrheological techniques for characterization of biopolymer hydrogels. Hydrogels, based on thermoreversible biopolymer agarose, were selected for these experiments. The influence of incorporated poly(sodium 4-styrenesulfonate) on structure and viscoelastic properties of agarose hydrogels was investigated through diffusion coefficient and MSD curves. Microrheological properties were studied by fluorescence correlation spectroscopy, by using fluorescent beads, which were embedded in hydrogel systems.
Study on reactivity of humic acids via method of diffusion cells
Hrubá, Pavla ; Weidlich,, Tomáš (referee) ; Sedláček, Petr (advisor)
The diploma thesis focuses on utilization of diffusion cells in reactivity mapping study on humic acids. In the experimental part, samples 6 humic acids of different origin or chemical modification were studied. All the samples were characterized by basic analytical and physico-chemical methods (elemental analysis, thermogravimetry, determination of acidity, spectrometry). Methylene blue was utilized as a model reactive probe and agarose gel as an inert support medium. An effect of interactions between humic acids and methylene blue on diffusivity of the dye in the hydrogel was determined and discussed.
Study on Sol-gel Process of Agarose by Classical Rheology and Dynamic Light Scattering
Krňávková, Šárka ; Hnyluchová, Zuzana (referee) ; Smilek, Jiří (advisor)
The main aim of the bachelor thesis was characterization of hydrogels from rheological point of view and by dynamic light scattering. Rheological part of research relates with the determination of the influence of temperature on mechanical properties, gelation temperature and temperature of solidification as well as the effect of aging on mechanical properties of hydrogel. The influence of the particle size on diffusion coefficient was investigated by scattering techniques. The positive correlation between the data obtained by both types of measurement and the potencial usage of dynamic light scattering method for the characterization of hydrogels was discussed as well.
Viscoelastic properties of hydrogels depending on relative humidity
Kouřilová, Ludmila ; Heger, Richard (referee) ; Smilek, Jiří (advisor)
This bachelor thesis is mainly aimed on the determination of the dependence of the viscoelastic properties of physically crosslinked hydrogels on the relative humidity controlled by humidity cell (as an accessory to a rotary rheometer), or the desiccator with the drying medium. The main objective was to optimise the methodology of the humidity cell for the rheological determination of the viscoelastic properties of hydrogel materials as a function of relative humidity and to verify experimental setup on the agarose hydrogel. The results showed that the agarose hydrogel gradually loses its dispersion medium after exposure to chosen relative humidity, resulting in a loss of contact between the upper rheometer sensor and the sample when measured with the standard measurement gap control setting, which is constant during the measurement. The setting of the control of normal force proved to be an appropriate solution, which has led to a gradual reduction in the height of the upper rheometer sensor in an attempt to keep the normal force at the desired level during the drying of the hydrogel. A humidity cell proves to be an appropriate method for determining the dependence of the viscoelastic properties of hydrogels on relative humidity. Unlike the use of a desiccator with drying medium, the drying of the hydrogel sample does not result in such rapid drying that it breaks the texture on its surface. Another advantage of a humidity cell is the ability to maintain the desired relative humidity value even if the gel begins to release dispersion medium into its surroundings, which was not possible with a desiccator with drying medium.
Time-temperature superposition principle used for study of rheological properties of polymer materials
Kadlec, Martin ; Jarábková, Sabína (referee) ; Smilek, Jiří (advisor)
This bachelor thesis provides a study of the “time-temperature superposition” principle and its applicability to hydrogels. According to current research, honey was chosen due to its simple viscoelastic properties (Newtonian liquid) as a suitable material for optimalization procedure. The knowledge obtained during optimization was further applied to real hydrogel materials, namely the agarose gel was selected as an example of thermoreversible hydrogel, as well as the hyaluronan and dextran gels as examples of hydrogels formed by the interaction of the polyelectrolyte with the opposite charged surfactant. By using the “time-temperature superposition” principle, a considerable increase in the range of the observed oscillation frequencies was achieved for all chosen samples, which led to gain of information about storage and loss or complex modulus, which could not be achieved by classical oscillatory test. Although master curves were generated for all the samples examined, curves for storage and loss modulus could be created separately only for hydrogels formed by the interaction of the polyelectrolyte with the opposite charged surfactant. For this reason, this group of hydrogels appears to be more suitable materials for the application of the “time-temperature superposition” principle.

National Repository of Grey Literature : 71 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.