National Repository of Grey Literature 66 records found  beginprevious46 - 55nextend  jump to record: Search took 0.00 seconds. 
Calandering of li-ion electrodes and its impact on the final capacity of lithium-ion cell
Svoboda, Lukáš ; Kazda, Tomáš (referee) ; Čech, Ondřej (advisor)
There is an effort to produce lithium-ion batteries with maximal density of energy, or higher capacity of cell with the same size. Calendaring of electrodes is important part of manufacturing of batteries. Its parameters, mainly the pressure of calendaring and with it related the final compression ratio of electrode layers, affect parameters of battery significantly. It is the process of pressing electrode material coated on current collector with certain pressure and it reduces its porosity and thickness. The aim of this bachelor thesis is determination of suitable level of calendaring that increases specific capacity, but does not reduce its cyclability.
Novel Electrochemical Biosensor for the Detection of DNA Damage Caused by Chemical Carcinogens
Blašková, Marta ; Vyskočil, Vlastimil (advisor) ; Zima, Jiří (referee)
Presented Bachelor Thesis is focused on the development and utilization of a simple and inexpensive electrochemical DNA biosensor for the detection of DNA damage caused by chemical carcinogens. A glassy carbon electrode (GCE), having several advantages such as broad potential window and well-renewable surface, was used for its preparation. A low- molecular-weight DNA isolated from salmon sperm was used. The initial part of the work is devoted to the optimization of the biosensor preparation and to its characterization, which was performed using several electrochemical techniques - cyclic voltammetry (CV), square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). The influence of the DNA immobilization type on the quality of the biosensor response was also investigated. Two approaches were tested: (i) spontaneous adsorption of DNA by leaving the DNA stock solution to dry on the GCE surface and (ii) adsorptive accumulation of DNA on the GCE surface from the solution (selected as the optimum one). The second part of this Thesis deals with the detection of DNA damage by various chemical carcinogens. Four model substances were tested: flutamide (an antiandrogen antitumor drug), 4-nitro-3-(trifluoromethyl)aniline (NTMA; a metabolite of flutamide), 2-aminoanthracene (a genotoxic...
Catalytic and adsorption properties of papain and its derivatives
Lachmanová, Štěpánka ; Hudeček, Jiří (advisor) ; Karpenko, Vladimír (referee)
The aminoacid sequence of papain (EC 3.4.22.2) consists of 212 aminoacids. It has only one free sulfhydryl group, which is located in the active site of the protein. Some organometallic complexes could be bonded only to this free -SH group due to their structure. The artificial metalloproteins synthesised by this way may have different electrochemical properties. In this work, we have studied the electrochemical properties of papain and its derivatives. We compared the ability of papain and its three artificial derivatives to catalyse the hydrogen evolution by the chronopotenciometry. The work was completed by the study of the electrochemical properties of the organometallic complexes of ruthenium, which were used for the artificial metalloprotein preparation. The electrochemical properties of the compounds were never studied before. The process of the hydrogen evolution catalysed by the proteins is held in the adsorbed state of the catalyst. Due to this fact we have also studied the adsorption properties of papain on the substrates with different level of hydrofobicity. (In Czech)
Spray-coated working electrodes of electrochemical sensors
Lechner, Filip ; Majzlíková, Petra (referee) ; Prášek, Jan (advisor)
This thesis is about the selection of the better type of thick film working electrode for the detection of substances in aqueous solutions, modified by spray coated carbon nanotubes. The theoretical part of this thesis describes the technology of thick film, properties and production of carbon nanotubes, introduction to electrochemistry and electroanalytical methods for the detection of substances in aqueous solutions. The practical part is aimed to realization of the working electrodes by thick film technology and their modification by spray-coated layer consist of carbon nanotubes. Electrodes are characterized using voltammetric methods, electrochemical impedance spectroscopy and electron microscopy. In conclusions is selected the most suitable type of working electrodes for reproducible electrochemical analysis.
Evaluation of electrochemical characteristics of AZ61 magnesium alloy processed by squeeze casting
Pikner, Jan ; Hadzima, Branislav (referee) ; Fintová, Stanislava (advisor)
Bachelor thesis deals with the characterization of electrochemical corrosion properties of AZ61 magnesium alloy prepared by squeeze casting method. The theoretical part of the work focuses on properties of AZ61 alloy, influence of alloying elements on magnesium alloys and corrosion. The practical part of the work deals with electrochemical characteristics of AZ61 alloy with different surface condition in of 0.1 M NaCl solution. Corrosion potential (Ekor) and corrosion current density (ikor) were determined by potentiodynamic test. Polarisation resistance was determined by electrochemical impedance spectroscopy. Based on the measured results was discussed the influence of production, chemical composition, structure and surface treatment (grinding and polishing) on corrosion characteristics of the alloy.
Evaluation of electrochemical characteristics of AZ61 wrought magnesium alloy
Kotek, Jakub ; Minda, Jozef (referee) ; Fintová, Stanislava (advisor)
This work is focused on evaluation the electrochemical characteristics of AZ61 wrought magnesium alloy. Electrochemical impedance spectroscopy and potentiodynamic tests were used to evaluate the electrochemical characteristic of the alloy. Values of polarization resistance were determined with electrochemical impedance spectroscopy. Values of corrosion potential and corrosion current density were determined with potentiodynamic tests. Sodium chloride solution at a concentration of 0.1 mol·dm-3 was used as a corrosion medium. Outcome of this work is to estimate an influence of fabrication, chemical composition and surface treatment on the corrosion properties of magnesium alloy.
Impedance measurement of lead-acid accumulator properties
Vaculík, Sebastian ; Neoral, Jiří (referee) ; Abraham, Pavel (advisor)
This work deals with the new and unique four-point method measurement of the impedance characteristics for experimental positive electrode. The theoretical part provides a short introduction to the electrochemical power sources, including the lead-acid batteries, which were used for measurement. Furthermore, there is description of the principle of electrochemical impedance spectroscopy and analysis of obtained data by using the equivalent circuit, consisting of passive components. The experimental section is devoted to the description of the device, which is used for realization of connection of electrodes with Potenciostat VSP, and program which is used for the simplification of processing of results. The main aim of this bachelor thesis is to get better understanding of lead-acid accumulators and impedance measurements. At practical part of the thesis I performed first measurements by two-step method based on electrochemical impedance spectroscopy.
Electrode Active Materials for Lithium-Ion Accumulators
Čech, Ondřej ; Oriňáková, Renáta (referee) ; Paidar,, Martin (referee) ; Sedlaříková, Marie (advisor)
This doctoral thesis deals with synthesis and characterisation of electroactive electrode materials for li-ion batteries and accumulators. The work is divided into two main parts. One deals with LiFePO4 based cathode composite electroactive material and in the second is described the synthesis and utilization of monoclinic TiO2(B) as an anode for li-ion cell. The main aim of the work is to relate the synthesis procedure and structural properties of both materials to its electrochemical preformance.
Preparation Techniques and Characterization of Electrodes with Nanostructured Surface
Hrdý, Radim ; Trnková, Libuše (referee) ; Janderka,, Pavel (referee) ; Hubálek, Jaromír (advisor)
Nowadays, nanostructures fixed on solid substrates and colloidal nanoparticles permeate through all areas of human life, in area of sensors and detection as well. This dissertation thesis deals with the fabrication of nanostructures on the surface of planar electrodes via self-ordered nanoporous template of aluminum trioxide. The nanofabrication, as one of many possible techniques, is used to increase the active surface area of electrodes by creating unique surface types with specific properties. These electrodes are very perspective in the applications, such as biomolecules electrochemical detection and measurement. The transformation of aluminum layer into non-conductive nanoporous template in the process of anodic oxidation is a fundamental technique employed to obtain the array of nanostructures in this thesis. The fabrication of high quality nanoporous membranes with narrow pore size distribution on various types of metallic multilayers is one of the key experimental parts in this work. Several problems associated with the production of the thin-film systems, including the dissolving the barrier oxide layer, are discussed and solved. Another part of this work deals with the use of nanoporous membrane as a template for the production of metallic nanostructures via electrochemical metal ions deposition directly into the pores. The obtained nanostructures as nanowires, nanorods or nanodots are characterized by the scanning electron microscopy and energy-dispersive or wavelength X-ray spectroscopy. The electrode surface, modified by gold nanostructures suitable for the detection of biomolecules, has been chosen for the electrochemical measurements, due to the gold biocompatibility. The nanostructured electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The effect of nanostructured surface geometrical parameters, including the size of the electrochemically active area, on the results of electrochemical measurements has been observed and compared to flat gold electrodes. Two model biomolecules, namely guanine and glutathione, have been chosen for the study of potential application of these nanostructures in biosensors.
Electrochemical impedance spectroscopy as a nanostructured bioelectrodes characterization method
Vrbová, Eva ; Urbánková, Kateřina (referee) ; Hrdý, Radim (advisor)
Diploma thesis deals of nanostructured surfaces, nanoparticles and electrochemical characterization methods such as cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The aim of this thesis is a theoretical research issues of production and characterization nanostructured modified electrodes. The practical part is the production of biomodified nanostructured electrodes by anodi- zation W/Al layers with galvanic deposition of gold or deposition of mercury, a modifi- cation of the electrodes by 11-mercaptoundecanoic acid and by bovine serum albumin (BSA). The thesis includes SEM images of nanostructured electrodes contact angle mea- surements of these electrodes and form an electrical circuit with subsequent simulation waveforms.

National Repository of Grey Literature : 66 records found   beginprevious46 - 55nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.