National Repository of Grey Literature 23 records found  beginprevious14 - 23  jump to record: Search took 0.01 seconds. 
Magnetism in curved geometries
Turčan, Igor ; Makarov, Denys (referee) ; Grundler, Dirk (referee) ; Urbánek, Michal (advisor)
V oblasti magnoniky, nového výzkumného oboru využívajícího fyziku spinových vln, roste zájem o vývoj funkčních zařízení s unikátními vlastnostmi . Hlavní překážkou pro budoucí generace výpočetní techniky založené na spinových vlnách je řízení toku spinových vln. Technická realizace je však u konvenčních přístupů velmi náročná, jelikož spoléhají na rovinné magnetické struktury, kde jsou magnetické vlastnosti dány výlučně vlastnostmi použitých materiálů. Vlastnosti jako jednoosá magnetická anizotropie tedy nelze přímo ovládat. Předkládaná dizertační práce využívá nový přístup k indukci efektivní magnetické interakce zakřivením systému. Jednoosá magnetická anizotropie, která je způsobena vlnitostí systému, je studována ve strukturách s modulovanými povrchy připravenými depozicí indukovanou elektronovým svazkem a elektronovou litografií. Potenciál lokální kontroly směru magnetizace pomocí přístupu 3D nanofabrikace je univerzální a lze jej použít s jakýmkoli běžně používaným magnetickým materiálem. Kromě toho je demonstrováno šíření spinových vln v Damonově-Eshbachově geometrii bez aplikace vnějšího magnetického pole ve vlnitých magnetických vlnovodech pomocí mikroskopie Brillouinova rozptylu světla. Rozšíření šířky píku feromagnetické rezonance a získání parametru tlumení je uvedeno pro rovinné a vlnité struktury. V poslední části práce je srovnáno měření délky šíření spinových vln ve vlnitých strukturách s měřením parametru tlumení a s analytickými výpočty. Snížení délky šíření spinových vln u vlnovodů s větší amplitudou modulace je spojeno se zvýšení parametru tlumení.
Spin wave turns
Dočkalová, Lucie ; Gablech, Imrich (referee) ; Urbánek, Michal (advisor)
V dnešním světě moderních technologií je vyvíjen značný tlak na vývoj stále výkonnějších elektronických zařízení. Tato zařízení operují na bázi integrovaných obvodů, jejichž nejmenší komponenty dosahují v současnosti velikosti v řádu jednotek nanometrů. Jejich další technologický vývoj spojený s trendem miniaturizace naráží na limity plynoucí z kvantového charakteru elektronů. Řešení této překážky nabízí magnonika, jakožto nový obor moderní fyziky. Na rozdíl od elektronických zařízení, magnonická zařízení zpracovávají data pomocí magnonů, což jsou kvazičástice spinových vln. Ačkoli některá magnonická zařízení již byla představena, jejich propojení na malém čipu je velmi komplikované. Efektivnímu přenosu magnonů skrze tzv. vlnovody brání vysoce anizotropní disperzní vztahy spinových vln. V této práci se zabýváme způsobem, jak překonat tuto anizotropii a umožnit tak šíření spinových vln v libovolném směru se stejnou efektivitou. Za tímto účelem používáme zvlněné vlnovody ve tvaru zatáček, které vyrábíme pomocí kombinace elektronové litografie a depozice indukované fokusovaným elektronovým svazkem. Zvlnění připravených vlnovodů charakterizujeme pomocí mikroskopu atomárních sil. Následně zkoumáme magnetický stav struktur pomocí Kerrovy mikroskopie. Na závěr se zaměřujeme na samotnou propagaci spinových vln skrze vyrobené zatáčky, kterou měříme pomocí spektroskopie Brillouinova rozptylu světla.
Excitation of exchange spin waves using microwave nano antennas
Davídková, Kristýna ; Holobrádek, Jakub (referee) ; Urbánek, Michal (advisor)
The transmission and processing of information could be carried out by utilizing spin waves in the future. Using the possibility of encoding information into the amplitude and wave phase would lead to the acceleration of complex mathematical operations, while for their efficiency it is necessary to work with spin waves in the exchange mode, which are characterized by a short wavelength. However, exchange mode spin waves are not so easy to generate. This bachelor thesis deals with the generation and detection of exchange spin waves, which is performed using lithographically fabricated nanoantennas on the surface of an iron-yttrium garnet magnetic layer. The bachelor thesis also contains analytical calculations of excitation spectra of the generated nanoantennas of different shapes and sizes, whose model is verified by simulations and experiment.
Phase-resolved Brillouin light scattering: development and applications
Wojewoda, Ondřej ; Dubroka, Adam (referee) ; Urbánek, Michal (advisor)
Spinové vlny mají potenciál být použity jako nová platforma pro přenos a zpracování dat, protože mohou dosáhnout vlnových délek v rozsahu nanometrů a frekvencí v rozsahu terahertzů. K tomu, aby bylo možné navrhnout zařízení a logické obvody založené na spinových vlnách, je zapotřebí získat informace o prostorovém rozložení intenzity spinové vlny a pokud je to možné, také o jejich fázi. To lze měřit pomocí fázově rozlišeného fokuso-vaného Brillouinova rozptylu světla (µ -BLS). Předložená práce se zabývá rozšířením stávající optické sestavy o možnost měření fáze, kde doposud bylo možné měřit pouze intenzitu. Toto rozšíření sestavy je důkladně popsáno a charakterizováno. Schopnosti optické sestavy jsou demonstrovány ve studii šíření spinových vln skrz Néelovu doménovou stěnu. Získané 2D mapy intenzity spinových vln ukazují, že propagace přes doménovou stěnu je ovlivněna topologicky vynucenou kruhovou Blochovou čarou ve středu doménové stěny a že režim propagace závisí na frekvenci spinových vln. V prvním režimu propagace se vytvoří dva svazky spinových vlny šířící se kolem kruhové Blochovy čáry, zatímco ve druhém režimu se spinové vlny šíří pouze středem. Fázově rozlišené µ-BLS měření odhaluje fázový po- sun spinových vln pro oba režimy. Mikromagnetické modelování spinových vln ukazuje rozrušení jejich fázových vlnoploch, které je třeba brát v úvahu při interpretaci měření a navrhování potenciálních zařízení. Mikromagnetické simulace ukazují, že vnější magnetické pole může být použito k pohybu kruhové Blochovy čáry ve stěně domény, a tedy k manipulaci spinových vln.
Metastable iron thin films for magnetic metamaterials
Holobrádek, Jakub ; Man, Ondřej (referee) ; Urbánek, Michal (advisor)
Magnetické nanostruktury mají zajímavé vlastnosti, které umožňují jejich aplikace v základním výzkumu i průmyslu. Jednou z těchto vědeckých disciplín je i magnonika - výzkumný obor, který se zabývá fyzikou spinových vln, které lze použít v nediskrétních výpočtech s nízkými ztrátami energie. Výroba magnetických struktur fokusovaným iontovým svazkem (FIB) je alternativní metoda k běžně používaným litografickým metodám. Materiál použitý v této práci - metastabilní železo - je schopen při ozáření iontovým svazkem podstoupit fázovou transformaci z paramagnetické plošně centrované kubické krystalové struktury na feromagnetickou fázi s prostorově centrovanou kubickou krystalovou strukturou. Jednou z vlastností, která ovlivňuje šíření spinových vlny, je magnetická anizotropie. Tato práce představuje vliv depozičních podmínek v ultra vysokém vakuu během přípravy metastabilní železné vrstvy na magnetickou anizotropii struktur vytvořených pomocí FIB do tohoto filmu. Dále prezentujeme souvislosti mezi parametry FIB, krystalografickými vlastnostmi výsledných struktur a jejich magnetickou anizotropií.
Magneto-optical study of the dynamic properties of magnetic nanostructures and nanostructured metamaterials
Flajšman, Lukáš ; Chumak, Andrii (referee) ; Revelosona, Dafiné (referee) ; Spousta, Jiří (advisor)
Magnonika je novým odvětvím výzkumu, který se zabývá fyzikou spinových vln. Magnonika jako vědní obor nabízí nové možnosti například v nediskrétních výpočtech na základě vlnového charakteru spinových vln. Při výrobě magnonických prvků klasickými metodami není možné příliš měnit charakter materiálů, ze kterých jsou jednotlivé prvky vyrobeny. Tento fakt silně omezuje univerzálnost vyrobených struktur. Cílem této práce je aplikovat nový typ materiálu do oboru magnoniky. Specifikum daného materiálu je možnost zápisu magnetických struktur pomocí iontového svazku. Ukazuje se, že tyto struktury mají velice zajímavé magnetické vlastnosti, které lze velice přesně řídit právě strategií ozařování iontovým svazkem. Na základě fázově rozlišené Brillouinovy spektroskopie jsme získali disperzní relaci spinových vln v tomto systému a tím i důležité parametry systému. Pozorování podkládáme mikromagnetickými simulacemi a analytickými modely. Vlastnosti systému pro magnonické aplikace prezentujeme na třech prototypických sadách struktur, které nelze vyrobit pomocí klasických materiálů.
Design of the device for magnetodynamic characterization of magnetic materials and nanostructures
Roučka, Václav ; Vaňatka, Marek (referee) ; Turčan, Igor (advisor)
Further development of magnonics, the field of study dealing with the phenomenon of spin waves, is connected to the research of novel materials and structures with useful magnetodynamic properties. One of the possible experimental techniques used to quantify these properties is the measurement of ferromagnetic resonance using vector network analyzer. This experimental technique is being dealt with in the presented bachelor thesis. At the beginning we shortly introduce the theoretical foundations of magnetization dynamics and the propagation of electromagnetic waves in microwave circuits. Then we describe the individual devices of the experimental apparatus and its overall design. Function of the device is demonstrated on a measurement of ferromagnetic resonance of a permalloy sample. Acquired data is processed using the methods mentioned in this thesis and at the end we present the resulting magnetodynamic properties of permalloy.
Dispersion relation of magnonic crystals with nontrivial spatial distribution of magnetic anisotropy
Wojewoda, Ondřej ; Hamrle,, Jaroslav (referee) ; Flajšman, Lukáš (advisor)
Magnonics is a novel field of research dealing with the physics of spin waves, which are collective excitations of a magnetization. Magnonic crystals, the basic building blocks of magnonic circuits, allow extended control over the spin-wave dispersion. The periodic structure of magnonic crystals results in the formation of a complex band structure with a gap of forbidden frequencies. Periodic structures are conventionally prepared by a local modulation of material thickness or by a step change of saturation magnetization. The presented work deals with the theoretical verification of dispersion relations of magnonic crystals, where the periodicity of the system is achieved by the modulation of the direction of uniaxial magnetic anisotropy and by continuous change of saturation magnetization. For a better insight into the propagation of spin waves in a material with non-homogeneous magnetic properties, a theory describing the refraction and reflection of spin waves at the interface is presented and further verified by numerical simulations.
Spin wave excitation and propagation in magnonic crystals prepared by focused ion beam direct writing
Křižáková, Viola ; Olejník,, Kamil (referee) ; Urbánek, Michal (advisor)
Paramagnetické niklem stabilizované tenké vrstvy plošně centrovaného kubického Fe, epitaxně narostené na monokrystalickém substrátu Cu(100) jsou známy svou schopností strukturní a magnetické fázové přeměny při ozáření iontovým svazkem, a to do prostorově centrované kubické struktury charakteristické feromagnetickými vlastnostmi. Monokrystalický Cu(100) substrát je možné také nahradit Si(100) s mezivrstvou Cu(100). Pomocí fokusovaného iontového svazku lze dále snadno lokálně modifikovat magnetické vlastnosti ozařované vrstvy. Tato metoda přímého zápisu magnetických struktur je alternativou k běžným litografickým technikám, nabízející nové jimi nedosažitelné možnosti. Připravené magnetické struktury následně využíváme k propagaci spinových vln. V práci je představen celý proces od růstu vrstev, přes přípravu mikrostruktur, až po studium jejich struktury a statických i dynamických magnetických vlastností. S využitím vektorového síťového analyzátoru studujeme ve vrstvách a v mikrostrukturách připravených fokusovaným iontovým svazkem feromagnetickou rezonanci a propagující se spinové vlny. Zdrojem spinových vln o definovaných vlnových vektorech jsou litograficky připravené koplanární vlnovody, sloužící také k induktivní detekci vln. Pomocí feromagnetické rezonance kvantitativně určujeme materiálové charakteristiky jako jsou saturační magnetizace a parametr útlumu a ze spekter propagujících módů následně určujeme charakteristiky spinových vln, které porovnáváme s dalšími feromagnetickými materiály.
Study of magnonic crystals in a frequency domain
Turčan, Igor ; Hrabec, Aleš (referee) ; Urbánek, Michal (advisor)
Popis magnetodynamických vlastností nanomagnetů a nanostrukturovaných magnetických materiálů vyžaduje metody vhodné pro zkoumání typické časové odezvy těchto systémů, tj. v řádu nanosekund a méně. Nedostatek technik, vhodných právě pro charakterizaci v časové doméně, je spojen s možnostmi současné elektroniky. Další možný přístup, jak popsat vlastnosti nanomagnetů, je charakterizace ve frekvenční doméně v pásmu GHz. Nejrozšířenější technikou charakterizace ve frekvenční doméně je měření feromagnetické rezonance (FMR). Ze spekter FMR lze získat cenné informace o systému: parametr tlumení, saturační magnetizace atd. Metoda, kterou využíváme k detekci excitací spinových vln, má za cíl zjednodušení charakterizace. Využíváme termoelektrickou detekci spinových vln v magnetických drátech prostřednictvím anomálního Nernstova jevu. Metoda je založena na disipaci tepla uvnitř magnetické vrstvy v důsledku útlumu spinových vln, a proto dochází k vytvoření teplotního gradientu směrem k substrátu (kolmo k povrchu). To vede k vytvoření elektrického pole kolmého jak na teplotní gradient, tak na směr magnetizace. Napětí je obvykle v řádu V, proto může být měřeno obvyklým laboratorním vybavením. Navzdory své jednoduchosti poskytuje tato metoda velmi zajímavé výsledky a může být použita pro charakterizaci magnonických vlnovodů, magnonických metamateriálů, emitorů spinových vln a dalších zařízení, pracujících se spinovými vlnami.

National Repository of Grey Literature : 23 records found   beginprevious14 - 23  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.