National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Beating Intracellular Bacterial Infections with Polymeric Nanobead-Based Interventions: Development, Structure Characterization, and Analysis
Trousil, Jiří ; Hrubý, Martin (advisor) ; Záruba, Kamil (referee) ; Kročová, Zuzana (referee)
One hundred years after the discovery of antimicrobials and antibiotics, intracellular bacterial pathogens remain a major cause of global morbidity and mortality. This is due to the complex and intricate ability of these pathogens to undergo intracellular replication while evading host cell immune defense. Bacterial agents such as Legionella pneumophila, Francisella tularensis, and Mycobacterium tuberculosis, as the causative agents of Legionnaires' disease, pulmonary tularemia, and tuberculosis (TB), respectively, contribute to this burden. Moreover, these agents are weaponizable pathogens due to their aerosolizability. TB represents a global health problem, although a potentially curative therapy has been available for approximately 50 years; this intracellular disease affects approximately 1 in 3 people worldwide, with over 10 million new cases per year and one death every three minutes. TB can usually be treated with a 6- to 9-month course of combined therapy. The necessity of using a cocktail of anti-TB drugs and the long-term treatment schedules required for conventional therapy, however, result in poor patient compliance; therefore, the risk of treatment failure and relapses is higher. Hence, improved drug delivery strategies for the existing drugs can be exploited to shorten the duration of TB...
Beating Intracellular Bacterial Infections with Polymeric Nanobead-Based Interventions: Development, Structure Characterization, and Analysis
Trousil, Jiří ; Hrubý, Martin (advisor) ; Záruba, Kamil (referee) ; Kročová, Zuzana (referee)
One hundred years after the discovery of antimicrobials and antibiotics, intracellular bacterial pathogens remain a major cause of global morbidity and mortality. This is due to the complex and intricate ability of these pathogens to undergo intracellular replication while evading host cell immune defense. Bacterial agents such as Legionella pneumophila, Francisella tularensis, and Mycobacterium tuberculosis, as the causative agents of Legionnaires' disease, pulmonary tularemia, and tuberculosis (TB), respectively, contribute to this burden. Moreover, these agents are weaponizable pathogens due to their aerosolizability. TB represents a global health problem, although a potentially curative therapy has been available for approximately 50 years; this intracellular disease affects approximately 1 in 3 people worldwide, with over 10 million new cases per year and one death every three minutes. TB can usually be treated with a 6- to 9-month course of combined therapy. The necessity of using a cocktail of anti-TB drugs and the long-term treatment schedules required for conventional therapy, however, result in poor patient compliance; therefore, the risk of treatment failure and relapses is higher. Hence, improved drug delivery strategies for the existing drugs can be exploited to shorten the duration of TB...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.