National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Messenger RNA stability and microRNA activity in mouse oocytes
Flemr, Matyáš ; Svoboda, Petr (advisor) ; Motlík, Jan (referee) ; Hampl, Aleš (referee)
The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical...
Regulation of translation in mammalian oocytes and early embryos
Jindrová, Anna ; Šušor, Andrej (advisor) ; Flemr, Matyáš (referee) ; Fulková, Helena (referee)
Fully grown oocytes undergo their further development in the absence of transcription. Completion of meiosis and early embryo development rely on the maternal mRNAs synthetized and stored during earlier development. Thus, the regulation of gene expression in oocytes during that period is controlled almost exclusively at the level of mRNA stabilization and translation. In the same vein, any mRNA metabolism could play a critical function at this stage of development. RNA localization followed by a local translation is a mechanism responsible for the control of spatial and temporal gene expression in the cell. We focused on visualization of mRNA and in situ translation in the mammalian oogenesis and embryogenesis. We characterized localization of global RNA population in the oocyte and early embryo nucleus together with RNA binding proteins. Additionally we visualized specific ribosomal proteins that contribute to translation in the oocyte and embryo. We have shown that the key player of cap-dependent translation mTOR becomes highly active post nuclear envelope breakdown (NEBD) and in turn its substrate, translational repressor 4E-BP1 becomes inactive. Precise localization of inactivated 4E-BP1 at the newly forming spindle of the oocyte indicates the ongoing translation in this area. Furthermore, from...
Messenger RNA stability and microRNA activity in mouse oocytes
Flemr, Matyáš ; Svoboda, Petr (advisor) ; Motlík, Jan (referee) ; Hampl, Aleš (referee)
The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.