National Repository of Grey Literature 91 records found  beginprevious59 - 68nextend  jump to record: Search took 0.01 seconds. 
Inhibition of nicotinic acetylcholine receptors by tacrine and its derivatives
Skřenková, Kristýna ; Krůšek, Jan (advisor) ; Doležal, Vladimír (referee)
Nicotinic acetylcholine receptors are ligand-gated ion channels which are located on neuromuscular junction and in central and perifric nervous system. Activity of nicotinic receptor might be modulated by variety of pharmacological agents. In this work, we have focused on the study of the inhibition effect of tacrine and its derivatives on the nicotinic acetycholine receptors of muscle and neuronal type. These derivatives function as acetylcholinesterase inhibitors and also interact with nicotinic acetylcholine receptors. The majority of current forms of treatment of Alzheimer's disease is based on cholinesterase inhibitors. We have studied the mechanism of tacrine and its derivatives by using patch clamp method in the configuration of whole-cell recording. Powered by TCPDF (www.tcpdf.org)
The role of TRPV1 receptors in chemokine CCL2 induced modulation of nociceptive synaptic transmission at spinal cord level
Adámek, Pavel ; Paleček, Jiří (advisor) ; Krůšek, Jan (referee)
Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn is a significant mechanism in the development and maintenance of different pathological pain states. Accumulating evidence indicates that the TRPV1 (transient receptor potential vanilloid 1) receptor and chemokine CCL2 (C-C motif ligand 2) may play a critical role in this process. The aim of this diploma thesis was to investigate the CCL2 induced modulation of nociceptive synaptic transmission in the dorsal horn of spinal cord and the role of the TRPV1 receptors. To investigate this aim patch-clamp recordings of spontaneous and miniature excitatory postsynaptic currents (sEPSC, mEPSC) from superficial dorsal horn neurons in acute rat lumbar spinal cord slices were used. After acute application of CCL2 on the slice preparation from naïve animals, a frequency increase of both sEPSC and mEPSC was present. This CCL2 induced increase in both sEPSC and mEPSC frequency was prevented by the TRPV1 receptor antagonist SB366791 application. No changes were observed in the amplitudes of sEPSC or mEPSC after application of the CCL2, SB366791, or co-application of CCL2 and SB366791. This suggests that the observed changes were mediated predominantly by presynaptic mechanisms. The preliminary results indicate that after chronic constriction...
Changes of intracellular pH in yeast cells under stress conditions
Divín, Radek ; Plášek, Jaromír (advisor) ; Krůšek, Jan (referee)
Title: Changes of intracellular pH in yeast cells under stress conditions Author: Radek Divín Department: Institute of Physics of Charles University Supervisor: prof. RNDr. Jaromír Plášek, CSc. Abstract: Specific values of intracellular pH (pHi) can affect all biochemical processes in a cell and this phenomenon is closely connected with the degree of importance of changes in the intracellular pH under the stress conditions. In the Master Thesis, the yeast cells Saccharomyces cerevisiae were used as a model of organism eukaryotic cells. Monitoring of intracellular pH of the cells was performed by the method of synchronous fluorescence scan technique of genetically encoded fluorescent probes pHluorin which was located in the cytosol of the cells. The cells were exposed to stress conditions due to the chemical changes in the environment. Consequently, their ability to maintain a stable value of the intracellular pH in various acidic environments was studied in more detail. The attention was also focused on the impact on optimizing of glucose cytosolic pH. The work was centered on the changes in intracellular pH under the influence of the presence of KCl in suspension. Furthermore, the decrease of cytosolic pH of monitored cells by protonophore CCCP was investigated. The effect of stress environment on the...
The comparison of the performace of selected carbocyanine dyes in fluorescent probing of yeast cell membrane potential.
Mudroňová, Kateřina ; Plášek, Jaromír (advisor) ; Krůšek, Jan (referee)
The membrane potential is one of the most important parameters of the living cell. It can be measured using carbocyanine fluorescent probes. In this thesis we examined parameters of several dyes of this family. For further experiments three of them were chosen - diOC3(3), diIC1(3) a diIC2(5) as a supplement to diSC3(3) and diSC3(5), which represent standard probes used at biophysical department of Institut of Physics. We compared the rates of their accumulation in S. cerevisiae cells to determine if they were MDR pumps' substrates. The other goal of this work was to decide whether the results obtained using different probes are equivalent and to determine if the presence of a probe affects the spectral characteristics of another. For this purpose we have chosen diSC3(3) and diSC3(5). With those dyes we examined the influence of the acidification on membrane potencial of the yeast S. cerevisiae. We showed that the information on depolarization obtained using both probes were matching very well.
The monitoring of intracellular ion concentrations in microbial cells
Vodáková, Adéla ; Plášek, Jaromír (advisor) ; Krůšek, Jan (referee)
The Master Thesis focuses on monitoring of intracellular ion concentrations in bacteria Escherichia coli and yeast Saccharomyces cerevisiae using genetically encoded fluorescent probes with green fluorescent protein (GFP). Aquired knowledge about this protein and its spectral characteristics is summarized in the introduction. For experimental study a pH-sensitive sensor which displays a ratio change of two excitation fluorescence peaks - pHluorin - was chosen. This probe was tested in bacteria and yeast cells. The experiments concentrated on the ability of the cell to maintain a constant cytosolic pH under various conditions like different pH values of the suspension, addition of glucose or KCl to the suspension. Another topic discussed in the thesis is the elimination of the cell autofluorescence from the GFP signal. For this purpose the synchronous fluorescence scan technique was succesfully used. I have found out that by using this method the measurements of cytosolic pH values are even more accurate thanks to the improved signal to noise ratio.
The Role of Bmh Proteins in the Regulation of Yeast Enzyme Neutral Trehalase Nth1.
Macáková, Eva ; Obšilová, Veronika (advisor) ; Krůšek, Jan (referee) ; Žáčková, Markéta (referee)
118 10. Summary Neutral trehalase 1 is a yeast enzyme from the family of hydrolases, which catalyzes hydrolysis of trehalose to two glucose molecules. Trehalose is a non-reducing disacharide, which serves as a carbon source in a yeast cells as well as a stress metabolite. When a cell is under stress conditions it accumulate trehalose and through the recovery process the trehalose is hydrolyses by trehalases. The main subject of our study was Nth1 from S. cerevisiae. It was published earlier (Panni, S., et al., 2008), that Nth1 must be phosphorylated by PKA and in the presence of 14-3-3 protein to be active. The activity of Nth1 also slightly increases in the presence of Ca2+ ions (Franco, A., et al., 2003). 14-3-3 proteins are family of acid regulatory proteins, which participates in variety of processes in the cells, like regulation of the cell-cycle, cell metabolism, transcription, apoptosis etc. They have more than 400 known binding partners, which include transcription factors, signalling molecules, enzymes and others. They control the regulation of their binding partners through phosphorylated motives in sequence by changing conformation of the binding partner, revealing or masking specific sequence or by mediation of protein-protein interactions. There are many isoforms of 14-3- 3 proteins through all...
Study of the factors affecting the binding specificity of the 14-3-3 proteins.
Veisová, Dana ; Obšilová, Veronika (advisor) ; Bařinka, Cyril (referee) ; Krůšek, Jan (referee)
113 11. Summary The 14-3-3 proteins are dimeric molecules with a characteristic shape and molecular mass about 30 kDa found in all eukaryotes. They are playing a key role in a variety of biological processes such as signal transduction, cell differentiation and apoptosis. The C- terminal segment of human 14-3-3ζ plays an important role as an autoinhibitor which can occupy the ligand binding groove in the absence of binding partner and blocks the binding of inappropriate ligand. The C-terminal segment structure has not been identified for any of the known crystallographic structures. Unlike the helical region α1-α9, the C-terminal segment shows the highest sequence variability. It is believed that the C-terminal segment is the most flexible region and can exist in a lot of conformations. The yeast isoforms of the 14-3-3 proteins Bmh1 and Bmh2 possess a distinctly variant C-terminal segment which is longer and contains a polyglutamine stretch of unknown function. The role of this C-terminal part has been studied with many of different biophysical methods. Dynamic light scattering, sedimentation velocity, time resolved fluorescence anisotropy decay, and size exclusion chromatography measurements showed that an apparent size of the molecules Bmh1 and Bmh2 is significantly bigger compared to the 14-3-3 isoforms....
Study of pharmacology and function of binding sites of nicotinic acetylcholine receptors
Kaniaková, Martina ; Krůšek, Jan (advisor) ; Chaloupka, Roman (referee) ; Zemková, Hana (referee)
Title: Study of pharmacology and function of binding sites of nicotinic acetylcholine receptors Author: Mgr. Martina Kaniaková Department: Institute of Physiology AS CR, v.v.i. Supervisor: RNDr. Jan Krůšek, CSc., Institute of Physiology AS CR, v.v.i. Abstract: Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels. We use the whole-cell patch-clamp technique to study functional and pharmacological properties of muscle and neuronal nicotinic receptors. Rat neuronal receptors were heterologously expressed in COS cells and human embryonic muscle receptors were studied in TE671 cells. Lobeline, a plant alkaloid with a long history of therapeutic use, interacts with the classical agonist-binding site of nAChRs. The final result of this interaction depends on the receptor subtype, lobeline and other agonists concentrations and the time schedule of application. Generally, lobeline is a very weak partial agonist eliciting deep desensitization at several subtypes of nAChRs. In combination with other agonists, lobeline acts as a competitive antagonist or coagonist. Using point mutation procedure we studied the functional role of negatively charged amino acids in the F-loop of β2 and β4 subunits of neuronal receptors. Neutralising mutations in β4 subunit led to up to eighteen-fold increase in the...
Adenylate cyclase toxin of Bordetella pertussis, its conformation and ion balance in host cell.
Motlová, Lucia ; Konopásek, Ivo (advisor) ; Krůšek, Jan (referee)
Adenylate cyclase (CyaA, ACT) toxin is one of the major virulence factors of Bordetella pertussis. Although CyaA binds to many types of membranes, it is assumed that the integrin CD11b/CD18 is its receptor which is expressed on the surface of myeloid cells. CyaA belongs to the family of RTX toxin-hemolysins. CyaA acts on the host cells by two independent activities. One of them is the conversion of ATP to cyclic AMP, which is catalyzed by adenylate cyclase (AC) domain after its translocation into the cytosol of the host cell, which leads to the entry of calcium cations into the host cell. Translocation is probably initiated by interaction of CyaA monomer with the target membrane. The second activity is the formation of CyaA channel selective for cations, which probably causes colloid osmotic lysis of target cells. The channel forming activity is provided by RTX hemolysin domain which most probably forms oligomers, although it was found that CyaA as a monomer causes leakage of potassium cations from the host cell. It is also not clear whether the oligomerization of CyaA would occur in solution, or after interaction with the host membrane. The aim of this study was to examine the flow of sodium ions on the membrane of murine macrophages J774A.1, which express integrin CD11b/CD18 on their surface....
On the role of the first transmembrane domain in desensitization kinetics of the P2X4 receptor.
Kalasová, Ilona ; Zemková, Hana (advisor) ; Krůšek, Jan (referee)
Extracellular adenosin-5'-triphosphate (ATP) is an important signalling molecule. Cells of eukaryotic tissues release ATP and express responding purinergic receptors. Ionotropic P2X receptors are trimeric ion channels permeable for K+, Na+ and Ca2+ ions. Each subunit consists of two transmembrane domains (TM1 and TM2), an extracellular loop and intracellular N- and C- termini. The transmembrane region is formed by six helical domains. According to the known crystal structure of zfP2X4 receptor, TM1 helixes are oriented peripherally and stabilize TM2 helixes which form the ion gate. However, eletrophysiological studies revealed that TM1 might also participate in channel gating and forming of the ion pore in the open state. The aim of this work was to investigate the role of TM1 in the process of desensitization of rat P2X4 receptor using cystein-scanning mutagenesis. Mutation of two residues (in Asn32 and Tyr42) prolonged desensitization of P2X4 receptor. Moreover, experiments with a partial agonist α,β-methylenadenosin-5'-triphosphate (αβ-meATP) proved that conformation change of TM domains in the process of desensitization is independent on conformation change caused by an agonist binding. Conserved residue Tyr42 is located in the proximity of TM2 of neighbouring subunit. It probably interacts with Met336...

National Repository of Grey Literature : 91 records found   beginprevious59 - 68nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.