National Repository of Grey Literature 66 records found  beginprevious21 - 30nextend  jump to record: Search took 0.00 seconds. 
Antibody derivatives for the detection of human glutamatecarboxypeptidase II
Bělousová, Nikola ; Bařinka, Cyril (advisor) ; Pavlíček, Jiří (referee)
Prostate cancer is one of the most common human malignancies and, consequently it is critical to develop appropriate diagnostic and therapeutic tools. Glutamate carboxypeptidase II (GCPII) is currently being considered one of the most important prostate cancer markers due to its tissue- specific expression. Whereas in healthy prostatic tissue the expression levels of GCPII are low, the transformation into the tumor is associated with the substantial increase of GCPII expression, with the highest levels observed in androgen-independent metastatic tumors. GCPII is thus considered a promising marker for early phase as well as advanced metastatic stages of prostate cancer. Current research is focused on the development of highly sensitive and specific reagents that allow detection of small amounts of GCPII, for example in early stages of cancer. Antibody derivatives are promising molecules for this purpose because they have high affinity and specificity and minimum negative side effects. Protein engineering is a prefered approach for preparation of various antibody molecules that differ in size, binding properties, stability, solubility, and production means. Different types of derivatives are being developed for medical needs such as in vitro diagnosis, therapy, and in vivo imagingSmall molecular...
Study of interactions between protein kinase CaMKK2 and calmodulin using fluorescence spectroscopy.
Mikulů, Martina ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
Ca2+ /calmodulin-dependent kinases are members of CaMK family, which is involved in CaMK cascade. One of CaMK family members is Ca2+ /calmodulin-dependent kinase kinase 2 (CaMKK2), which is activated by Ca2+ /CaM-binding. There are some structural differences between CaMKK2 and other protein kinases, one of them is a structure near αE-helix and autoinhibitory domain. Due to the overlap of autoinhibitory domain and Ca2+ /CaM-binding domain it can be supposed that Ca2+ /CaM-binding induces structural changes near autoinhibitory do- main and thus can affect the accessibility of this region. CaMKK2 W445F mutant, which contains only one tryptophane residue Trp374 close to the αE-helix, was expressed and purified. Structural changes in this region were monitored using tryptophan fluorescence intensity quenching experiments, which can provide information about the accessibility of region surrounding tryptophan residue. The fluorescence of Trp374 was quenched using acrylamide. Comparison of fluorescence quenching experiments performed in the presence and absence of calmodulin suggests that the complex formation induces structural change in the region surrounding Trp374 . 1
Biophysical characterization of the N-terminal part of protein kinase ASK1.
Honzejková, Karolína ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
Apoptosis signal-regulating kinase 1 (ASK1) is an apical kinase of the mitogen-activated protein kinase cascade. Its activity is triggered by various stress stimuli such as reactive oxygen species (ROS), cytokines, endoplasmic reticulum (ER) stress or osmotic stress resulting in the activation of p38 and c-Jun N-terminal kinase metabolic pathways and leading to inflammation or cell death. Dysregulation of ASK1 is linked to several pathologies such as neurodegenerative and cardiovascular diseases and cancer, which makes this protein a potential target of therapeutic intervention. The activity of ASK1 is regulated through protein-protein interactions with 14-3-3 proteins and thioredoxin1 being among the most important negative regulators and tumour necrosis factor receptor-associated factors being an example of positive regulators. Apart from that, ASK1 is also tightly regulated via oligomerization. Despite continual progress being made, the precise molecular mechanism of ASK1 regulation and the role of ASK1 oligomerization in this process still remains unclear to this day owing to the lack of structural data. Interaction of the N-terminal parts of two protomers of ASK1 dimer is one of the key steps in ASK1 activation. It was shown, that the isolated ASK1 catalytic domain (ASK1-CD) forms stable...
Identification of the binding sites on transient receptor potential cation channel TRPC6 for Calmodulin and S100A1
Bílý, Jan ; Teisinger, Jan (advisor) ; Krůšek, Jan (referee) ; Pavlíček, Jiří (referee)
Identification of the binding sites on transient receptor potential cation channel TRPC6 for Calmodulin and S100A1 The TRP (transient receptor potential) group of ion channels represents a large subset of membrane receptors. A part of this supergroup are canonical TRPC channels with a sequence homology analogical to TRP receptor first discovered at fruit fly (Drosophila melanogaster). These membrane channels are involved in a variety of physiological functions in different cell types and tissues. TRPC6 is a non-selective cation channel that modulates the calcium level in eukaryotic cells (including sensory receptor cells) in response to external signals. TRPC6 channel contains binding domain CIBR (Calmodulin inositol binding region), which is also able to adapt to calcium binding protein S100A1. Characterisation of the integrative binding site for calmodulin (CaM) and S100A1 at the C-tail of TRPC6 is presented in this work. Using site-directed mutagenesis, soluble protein fragments TRPC6 CT (801-787) were prepared with intentional changes in amino acid sequence. Several positively charged amino acid residues (Arg852, Lys856, Lys859, Arg860 and Arg864) were determined by measurement of fluorescence anisotropy influence and their participation in the calcium-dependent binding of CaM and/or S100A1 to...
Structural study of the complex between the 14-3-3 protein, CaMKK1 and CaMKK1:Ca2+/CaM
Mikulů, Martina ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
The Ca2+ -signaling pathway is an important mechanism of cell signaling. Ca2+ /Cal- modulin (CaM)-dependent protein kinases (CaMKs) are members of Ser/Thr protein kinase family. CaMKs are regulated by Ca2+ /CaM binding in response to increase in intracellular level of Ca2+ . An important member of this protein family is Ca2+ /CaM- dependent protein kinase kinase (CaMKK), which is an upstream activator of CaMKI and CaMKIV. There are two isoforms of CaMKK, CaMKK1 and CaMKK2. CaMKK1 is regulated not only by Ca2+ /CaM-binding, but also by phosphorylation by cAMP-dependent protein kinase A (PKA). PKA phosphorylation induces inter- action with the 14-3-3 proteins. Previous studies of interaction between CaMKK1 and 14-3-3 proteins suggested, that the interaction with 14-3-3 proteins keeps CaMKK1 in the PKA-induced inhibited state and blocks its active site. However, the exact mecha- nism of this inhibition is still unclear mainly due to the absence of structural data. Main aim of this diploma thesis was to characterize the protein complexes between CaMKK1, Ca2+ /CaM and 14-3-3γ using analytical ultracentrifugation, small angle X-ray scattering, and chemical cross-linking coupled to mass spectrometry. Analytical ultracentrifugation revealed concentration-dependent dimerization of CaMKK1, which is...
Preparation and characterization of the catalytic domain of human protein kinase ASK1.
Petrvalská, Olívia ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
Protein kinase ASK1 (apoptosis signal-regulating kinase 1) is a member of the mitogen- activated protein kinase kinase kinase (MAP3K) family and plays a crucial role in immune and stress responses. Since the increased activity of ASK1 has been linked to the development of several diseases including cancer, cardiovascular and neurodegenerative diseases, this enzyme is a promising target for therapeutical intervention in these pathologies. The molecule of ASK1 consists of 1374 amino acid residues, but catalytic activity possesses only a kinase domain located approximately in the middle of the molecule. The activity of ASK1 is regulated by interactions with various proteins including the 14-3-3 protein. This protein recognizes a phosphorylated motif around Ser966 at the C-terminus of the catalytic domain of ASK1. This binding interaction inhibits ASK1 through unknown mechanism. ASK1 under stress conditions, such as oxidative stress, is dephosphorylated at Ser966 and the 14-3-3 protein dissociates. This dissociation is then one of the factors that lead to the activation of ASK1. The aim of this diploma thesis was to prepare a complex of the catalytic domain of ASK1 with the 14-3-3 protein for subsequent structural studies. Both proteins were expressed in E. coli cells and successfully purified. In...
Příprava a charakterisace rekombinantního dermcidinu jako potenciálního proteinového partnera glutamátkarboxypeptidasy II
Tužil, Jan ; Konvalinka, Jan (advisor) ; Pavlíček, Jiří (referee)
A process of forming new blood vessels is necessary for tumour viability and expansion. Without vasculature, tumour stops growing at a size of millimeters. Some tumours, however, undergo an angiogenic switch and start to build up their own vascular architecture. The rate of apoptosis then decreases and the tumour becomes invasive. There are many factors that control the process of physiological angiogenesis. These might or might not relate to tumour tissue as well. Glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) is a type II transmembrane glycoprotein with two known enzymatic activities. GCPII expression is upregulated in prostate cancer and also highly expressed in tumour-associated neovasculature even though none of these enzymatic functions was observed on the endothelium. Although numerous researches suggested that GCPII might serve as a receptor, no natural ligand has been identified yet. Preliminary experiments performed in our laboratory indicated some proteins to be possible natural ligands of GCPII. Therefore, we chose one of them- dermcidin, cloned and expressed this protein in mammalian cells. We investigated its possible interaction with GCPII introducing new detection system utilizing FLAG-tag however, we were not able to approve neither disapprove its interaction in vitro.
Study of the interaction of receptor NKp46 with adhesin Epa1
Houserová, Jana ; Vaněk, Ondřej (advisor) ; Pavlíček, Jiří (referee)
One of the key components of the innate immune system are natural killer (NK) cells. The task of these cells is to induce apoptosis in target cells (e.g., cancer or virally infected cells). The target cells are identified by their interaction with surface receptors of the NK cells. On the surface of the NK cells, there are activating and inhibiting receptors. One of the activating receptors is the natural cytotoxicity receptor NKp46. Several ligands of this receptor have been identified, one of them being the epithelial adhesin Epa1 of yeast Candida glabrata. The invasive candidiasis caused by this yeast is a feared complication for patients with haematological diseases. The use of the NK cells in immunotherapy includes bispecific fusion proteins which can bind to the NK receptor with one part and to tumour antigen with the other part. This work focuses on recombinant preparation of the NKp46 protein. To facilitate a study of the effects of O-glycosylation on the binding of the ligands, a mutation of the glycosylation site NKp46 T225A was prepared. A stably transfected HEK293S GnTI- and HEK293T cells had been prepared and these proteins were then extracellularly secreted. The Epa1 protein had been produced in E. coli bacterial expression system and purified. The binding ability of the Epa1 protein...
Biophysical characterization of the CAR/RXR protein complex with its binding partners
Duchoslav, Vojtěch ; Bouřa, Evžen (advisor) ; Pavlíček, Jiří (referee)
The constitutive androstane receptor (CAR) plays an important role as a xenosensor in the organism and is therefore widely expressed in the kidney, liver, gallbladder and in the small intestine epithelium, where the biotransformation of xenobiotic occurs. CAR is also an important factor in the elimination of bile acids and bilirubin. CAR has also been shown to have an important role in regulation of glucose and lipid metabolism. Impairment of lipid and glucose metabolism is a common cause of cardiovascular and metabolic diseases such as atherosclerosis, type 2 diabetes, obesity and insulin resistance. These diseases are called metabolic syndrome and result in severe organ damage. CAR respective its complex with RXRα (retinoid X receptor α) has become a promising biological target for drug discovery for metabolic syndrome. The major aim of this study was a structural characterization of the CAR/RXRα protein complex together with the agonist IV676*HCl, which would describe in detail the interaction of this small molecule with the receptor. Obtained structural information would be used to design improved agonists.

National Repository of Grey Literature : 66 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.