National Repository of Grey Literature 131 records found  beginprevious21 - 30nextend  jump to record: Search took 0.00 seconds. 
Study of ozone reactions with the surface of metallic materials
Krzyžanková, Anežka ; Kozáková, Zdenka (referee) ; Mazánková, Věra (advisor)
This bachelor thesis is focused on the study of ozone and oxygen reactions with the surface of metallic materials. Ozone undergoes spontaneous decomposition, which is, for example, influenced by increased temperature or reactions with other substances. The aim is to find out how fast heterogeneous decomposition or ozone formation takes place on different metal surfaces. The theoretical part describes the properties of ozone, possibilities of its use, generation of ozone, methods of determination of concentration and relation of ozone to solid surfaces. The experimental part examines how the ozone concentration changes depending on the reaction time at room temperature, the change in oxygen and argon flow during blowing, and the decomposition itself on the steel, copper, and aluminum surfaces. The ozone generated from the oxygen was enclosed in a metal material tube and allowed to react for a certain period of time. After this time, the ozone was blown out by various oxygen flow rates. Ozone concentration was monitored by absorption spectrometry. The dependence obtained shows that ozone concentration decreases. In further experiments, ozone was allowed to flow through the tubes for 5 min. After this time, pure oxygen was fed into the tube and ozone formed by heterogeneous surface reactions. The influence of the reaction time on the formation and disappearance of ozone on the surfaces was investigated. Finally, surface analysis was performed using a scanning electron microscope with elemental analysis.
Study of elementary inactivation processes acting during sterilization of procaryotic systems in dielectric barrier discharge
Bittnerová, Zuzana ; Sťahel, Pavel (referee) ; Kozáková, Zdenka (advisor)
Presented master’s thesis is focused on the study of the elementary inactivation processes acting during sterilization of procaryotic systems in dielectric barrier discharge (DBD). Sterilization is an important biomedical and food-industry application and plasma sterilization is one of the methods, which are suitable for sterilization of heat and chemical sensitive materials. Biologically contaminated samples were treated in dielectric barrier discharge operated at atmospheric pressure. The discharge was generated in argon and in nitrogen. The plasma power density was 2725,93 mW cm–3 in argon and 2325,93 mW cm–3 in nitrogen. Gram positive bacteria Bacillus subtilis and gram negative bacteria Escherichia coli were used as a bioindicator. Bacteria were spread onto the surface of Whatman No.1 filtration paper. The influence of UV radiation, reactive species, heat and plasma discharge where the synergistic function of all of the agents was studied. Effects of UV radiation and temperature were studied separately. In order to separate the effect of UV radiation generated by DBD the quartz glass transmitting UV radiation was employed. During the plasma exposition selected samples were covered with the quartz window while other samples were directly exposed to the plasma. Covered samples were exposed to UV radiation and temperature (which cannot be eliminated), samples without quartz window were directly plasma exposed (treated). Results show that for covered samples the lower inactivation was reached than by the samples directly exposed to plasma. When studying the effect of temperature, the temperature between the DBD electrodes was measured by means of a thermocouple. Afterwards the samples were placed in an oven and exposed to the same temperature as was measured between the electrodes. By comparing the results of heat treated samples and plasma treated samples it can be assumed that the influence of the temperature during the sterilization process in DBD is very low. The discharge parameters were studied by means of the Optical Emission Spectroscopy. Plasma treated samples were assessed employing Scanning Electron Microscopy (SEM). Damage of Bacillus subtilis cell wall due to the effect of plasma was observed while no effect of plasma on the structure of filtration paper was detected.
Ozone gas-fading of photographs
Védlová, Petra ; Kozáková, Zdenka (referee) ; Veselý, Michal (advisor)
This bachelor thesis deals with principels of inkjet printing, ink composition and print media. The paper also focuses on stability of inkjet prints, degradation of inks by ambient impacts, mechanisms of such degradations and protection against degradation. The experimental section examines the impact of ozone on gas-fading of injekt prints, which is one of the most important factors by degradation of dyes for both clasic prints and prints with protective varnish. In conclusion two methods for assessing dye degradation – colorimetric (by calculating the volume of the color gamut) and densitometric (by calculating optical densities) – are investigated and compared.
Polymer layers prepared on the basis of 2-methyl-2-oxazoline by plasmachemical method and their diagnostics
Podzemná, Daniela ; Kozáková, Zdenka (referee) ; Mazánková, Věra (advisor)
The main topic of this bachelor thesis was preparation of 2-methyl-2-oxazoline-based thin polymer layers. These layers were prepared by plasma polymerization in a dielectric barrier discharge in an inert nitrogen atmosphere. In experimental part polyoxazoline layers were characterized using several diagnostic methods. The first one was study of layers surface using scanning electron microscopy, next was determination of contact angles and subsequent determination of free surface energy. Antibacterial properties were also investigated by antibacterial tests using a bacterial culture of Staphylococcus epidermidis.
Diaphragm discharge in organic dye solutions with focus on electrolytic decomposition
Davidová, Jaroslava ; Brablec, Antonín (referee) ; Kozáková, Zdenka (advisor)
This Diploma thesis is focused on physical and chemical effects which contribute to the decomposition of organic dyes by diaphragm discharge generated in water solutions. Due to the application of DC high voltage source in continuous regime, there is an effect of electrolysis contributing to the dye decomposition by diaphragm discharge. The aim of this work was to find out when the electrolysis is running (or when is the moment of discharge breakdown) and which factors influence the breakdown. The other goal was decomposition of selected textile and food organic dyes by electrolysis itself. In the theoretical part, theory about creation of electrical discharges in aqueous solutions is noted and various types of underwater discharges are described. Background researches about underwater electrical discharges used in the world are mentioned as well as the use of diaphragm discharges and various ways how to remove organic dyes from wastewater. Finally, theories of electrolysis, UV-VIS spectroscopy and basis of other analytical methods useful for detection of organic molecules are described. Experimental part is oriented to experiment procedure which was carried out in a reactor with separated electrode areas. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.4 mm. Used chemicals and course of experiments are described in this part, too. First, the breakdown moment in the reactor was investigated (i. e. determination, when only electrolysis was operating) by formation of hydrogen peroxide and measurement of dynamic (time resolved) electrical characteristics. Next, decomposition of selected dyes by electrolysis was carried out. As the decomposition was related to decolorization of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had an effect on breakdown of diaphragm discharge. These factors are kind of used electrolyte, initial conductivity of solution, kind of dye, temperature of solution and type of reactor (or solution volume). From the result, the most important factor is initial solution conductivity. After the determination of the breakdown moment, the electrolysis of organic dyes was performed. The applied current was 10 mA, initial conductivity was 500 µS/cm and used electrolyte was NaCl. Moreover comparison of dye decomposition in dependence on the different applied power was realized. From this comparison one can assume, there is no significant contribution of electrolysis (the efficiency is approximately 15 %) to the diaphragm discharge in aqueous solution.
Study of plasma interaction with bacteria for cosmetic applications
Kocianová, Magdaléna ; Krčma, František (referee) ; Kozáková, Zdenka (advisor)
This bachelor thesis is focused on sterilization effects of low temperature plasma on grampositive, anaerobic non-sporulating bacteria Propionibacterium acnes. The plasma sterilization process is fast, effective, non-toxic, environmentally friendly, cost- effective and safe not only for servicing staff, but mainly for the patient. Another advantage of using low temperature plasma is the promotion of cell proliferation and wound healing. The experimental part is conducted to provide an inhibition effect of low-temperature plasma on the Propionibacterium acnes bacterium that causes a purulent inflammation. This bacteria was inoculated in various concentrations on culture soil and treated by plasma at a distance of 1 mm from the agar surface. Two plasma devices were used for plasma generation. One of them was a traditional torch discharge, the second one was based on the surface wave discharge. The microwave discharge was generated in argon at a power of 9 W, gas flow rate of 5 l/min and with water cooling to avoid thermal effects on the treated surface. From the achieved results it can be stated that the low temperature plasma has sterilization effects on a grampositive, anaerobic non-sporulating bacteriu Propionibacterium acnes.
Spectroscopy of VOC degradation by surface discharge catalyzed by TiO2
Veverková, Radka ; Slavíček, Pavel (referee) ; Kozáková, Zdenka (advisor)
Bachelor thesis is focused on the study of degradation of volatile organic compounds in surface discharge catalysed by TiO2. Volatile organic compounds are dangerous both for human beings and the environment. Therefore it is necessary to eliminate volatile organic compounds. Plasma technology is one of the options how to reach their efficient removal. The experiment was carried out in the plasma reactor with electrodes for surface discharge. One or two layers of TiO2 catalyst were deposited on one of the electrodes. Nitrogen was used as a carrier gas and it was mixed with air before entering the reactor. The radiation emitted by the discharge during the degradation of VOC was transmitted via optical fibre to the optical emission spectrometer Jobin Yvon TRIAX 550. Toluene, hexane, cyklohexane and xylene were used as model VOCs. During the experiment the impact of input power on catalysed or non-catalysed degradation of VOC by the discharge has been monitored. Using optical emission spectrometry it is possible to determine some important parameters of surface discharge, such as rotation and vibration temperature. The values were determined for each measurement in the range from 650 to 1050 K for rotation temperature and from 1600 to 1950 K for vibration temperature. The average error of determination was 100 K for rotation temperature and 120 K for vibration temperature. It was found, that the catalyst is without effect on the rotation and vibration temperature. In contrast, change of discharge input power significantly influenced both rotation and vibration temperature. Significantly different values of rotation and vibration temperature were obtained in the presence of particular compound for lower input power, while these values were similar for higher input power. Further, the spectral bands of nitrogen, oxygen and NO were identified from emission spectra. The obtained results may be used as a fundament for further study of volatile organic compounds decomposition in surface discharge.
Characterization of plasma activated water for biomedical applications
Šindelková, Kateřina ; Dzik, Petr (referee) ; Kozáková, Zdenka (advisor)
The aim of this master thesis is to characterize plasma activated water (PAW) prepared in various plasma systems using direct and indirect interaction of plasma with liquid or its surface. Plasma was generated by electric discharges at atmospheric pressure. The prepared plasma-activated water was studied with respect to its use in biomedical applications. The theoretical part deals with plasma activated water. It contains a description of the PAW preparation, its characterization in terms of produced particles or its physico-chemical properties. Also, methods for antimicrobial activity estimation or colorimetric determination of produced particles are described in this section. In the experimental part of this work, the types of discharges that were used for the PAW preparation and their comparison are presented. Two types of liquids were selected for the activation, namely distilled and tap water. Subsequently, concentrations of selected reactive particles in PAW (hydrogen peroxide, nitrates and nitrites) produced in three different plasma systems were determined. Besides the comparison of reactive particles production in various systems, their time stability was studied as well. Over time after the PAW preparation, the values of active particles concentrations have changed due to mutual interactions between the particles. Mainly, nitrites were oxidized to nitrates or vice versa depending on the PAW type and other conditions. Part of the work was also monitoring selected physical properties of PAW, namely pH value and specific conductivity. It has been found that PAW does not retain its activated properties for too long, depending on the type of preparation and methods of storage. Therefore, one of the important goals of this work was to determine and compare suitable storage conditions for PAW with respect to its potential biomedical applications.
Study of volatile hydrocarbon decomposition in non-thermal plasma of surface discharge at atmoapheric pressure
Věrná, Jana ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
The main goal of this thesis was to study plasma generated by surface discharge and its application in volatile organic compound destruction. Introduction of this thesis deals with the issue of volatile organic compound. The term of volatile organic compound was defined and explained. Summary of the most important sources of volatile organic compound emissions and possible technics for their elimination was presented. This thesis drew attention on negative aspects of volatile organic compounds on human organism and on the whole environment. The problems of surface discharge and its possible application in various branches are known only few years therefore construction of plasma reactor itself was the first independent step of this work. The plasma reactor was consisted of electrode, which was created from the series of metal stripes each other separated by dielectric barrier. On the surface of the electrode, discharge was regulated and distributed. For the reason of technical limits experiment time was limited up to one minute. The experimental part describes reactor for surface discharge and other parts of apparatus in which degradation volatile organic compound was carried out. Nitrogen was used as carrier gas and it was mixed with air before entering into the reactor. Samples of compounds after degradation process were taken from reactor for the subsequent analysis. Analysis of the products proceeded in a gas chromatogram linked to mass spectrometer. The decomposition products were adsorbed in the SPME filaments or in sorption tubes. The decomposition products were analysed also through the mean of Testo 350 M/XL. This apparatus provided the information on the concentration of small molecules such as CO, H2, NO, NO2 and CxHy Hexane, cyclohexane and xylene were used as VOC examples. Analysis of GC-MS showed decomposition products of hexane, cyclohexane and xylene. The decomposition products were especially various alcohols, ketones, aldehydes and benzene compounds. The apparatus Testo 350 M/XL was unable to detect any CxHy, only large quantity of NO2. This thesis was further focused on possible factors which could have an influence on degradation of compounds, for example input power or different flow of oxygen. It was found that increasing power declined the removal efficiency. The maximum removal efficiency was 87 % for degradation of hexane at the lowest input power. Next part of this thesis was focused on diagnostics of plasma generated in the surface discharge form. The optical emission spectroscopy has been chosen as the best method for plasma characterisation. By this method, various important discharge parameters can be determined, e.g. vibration and rotation temperature. The obtained numeric value of rotation temperature was 840±80 K and vibration temperature was 1880±140 K. The obtained results may be used as a fundament for further study of VOC decomposition in surface discharge.
Analysis of humic acids solutions after their decomposition by diaphragm discharge
Totová, Ivana ; Švejdová, Dana (referee) ; Kozáková, Zdenka (advisor)
Preliminary results of research focused on the applications of DC diaphragm discharge in water solutions containing humic substances are presented in this diploma thesis. Electrical discharges in water produce various reactive species such as radicals (•OH, •O, •H), ions and molecules (H2O2, O3). These species have high oxidation potential and thus they easily react with order species and molecules. Such reactions could lead, for example, to destruction of organic pollutants dissolved in water. This work studies this effect on humic matters that can be contained in water coming from floods. Diaphragm discharge investigated by this work was created in the reactor using konstant DC high voltage up to 2 kV that gave the total input power from 100 to 200 W. Breakdown and discharge ignition started in the pin-hole in the dielectric barrier separating two electrode spaces (anode and cathode space). Presented work investigates decomposition of humic substances by the electric discharge in the dependence of solution properties and discharge conditions. Parameters such as initial solution conductivity, electrolyte kind or input power have been investigated. Moreover, substantial effect of pH on humic acid decomposition has been observed. Refraktometry and absorption spectroscopy in UV-VIS region together with fluorescence spectroscopy has been used for the detection of changes in humic solutions.

National Repository of Grey Literature : 131 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.