National Repository of Grey Literature 40 records found  beginprevious21 - 30next  jump to record: Search took 0.01 seconds. 
Molecules in Cell Membranes
Timr, Štěpán ; Jungwirth, Pavel (advisor) ; Böckman, Rainer (referee) ; Ettrich, Rüdiger (referee)
Biological membranes are actively involved in a multitude of processes in living cells; therefore, a detailed characterization of their structure, dynamics, and function is essential for an understanding of living organisms at the molecular level. In this work, we made use of the high spatial and temporal resolution offered by computer simulations to investigate the behavior of several molecular species which associate with cellular membranes. Using a combination of classical molecular dynamics simulations and ab initio electronic structure calculations, we were able to characterize nonlinear optical properties of membrane- embedded fluorescent probes and thus contribute to establishing two-photon polarization microscopy as a tool of structural biology. Moreover, our molecular dynamics simulations provided an atomistic picture of the reversible membrane binding of recoverin, a neuronal calcium-sensing protein involved in vision adaptation, and they also yielded an important insight into the mechanism of its calcium-induced myristoyl switch. In addition, we examined the biological role of cholesterol oxidation and compared two methods of representing transmembrane voltage in molecular dynamics simulations.
Computer modeling of the inner ear
Perlácová, Tereza ; Jungwirth, Pavel (advisor) ; Vejchodský, Tomáš (referee)
Do mechanického modelu kochley zavádzame implicitné numerické metódy. Tes- tujeme konkrétne štyri metódy: implicitný Euler, Crank-Nicolson, BDF druhého a tretieho rádu na lineárnej a nelineárnej verzii modelu. Nelineárny model obsahuje funkciu so saturujúcou vlastnosťou. Aplikácia implicitných metód na nelineárny model vedie na sústavu nelineárnych rovníc. Predstavujeme dva spôsoby, ako túto sústavu numericky riešiť. Prvý z nich zahrňuje nelinearitu do pravej strany novovzniknutej lineárnej sústavy. Druhý robí linearizáciu nelineárnej funkcie. V práci porovnávame oba spôsoby z hľadiska efektivity a sledujeme ich konvergenciu k referenčnému riešeniu. Pre hodnotu tolerancie, ktorú používame na určenie numerickej konvergencie, je prvý spôsob efektívnejší. V úplne nelineárnom režime druhý spôsob zlyháva, pretože nekon- verguje k referenčnému riešeniu. Výsledkom porovnania implicitných metód je, že Crank-Nicolsonova metóda s prvým spôsobom riešenia nelineárnej sústavy je pre účely nášho modelu najlepšia. Použitie tejto metódy v mechanickom modeli nám umožňuje vytvoriť ľubovoľne presné prepojenie medzi mechanickým a elektrickým modelom kochley, rešpektujúc fyziológiu človeka. 1
Computer modelling of biomolecules - potential chemoterapeutics
Maláč, Kamil ; Jungwirth, Pavel (referee)
Classical molecular dynamics simulations were applied on complexes of RNA-dependent RNA-polymerase, Ribonuclease H, Argonaute and Ribonuclease L with chemically modified nucleic acids, which are studied as potential chemotherapeutic agents. Powerful graphics processing units, through which these molecular dynamics simulations were performed, enabled to acquire trajectory length from hundreds of nanoseconds to one microsecond. Molecular dynamics simulations allowed capture differences in binding of various modified nucleic acids to the above mentioned enzymes. These identified differences fitted well with experimental results. It opens the door for rational design of the structure of potential chemotherapeutic agents based on chemically modified nucleic acids.
Investigation of monomolecular organic layers and their interaction with atmospheric oxidants and pollutants
Habartová, Alena ; Jungwirth, Pavel (advisor) ; Jedlovszky, Pal (referee) ; Klán, Petr (referee)
Title: Investigation of monomolecular organic layers and their interaction with atmospheric oxidants and polutants Author: Mgr. Alena Habartová Institute: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic Advisor: prof. Mgr. Pavel Jungwirth, DSc. Abstract: Using classical molecular dynamics simulations, we studied interac- tions between Langmuir monolayers of palmitic acid (PA) and haloalkanes as serious atmospheric pollutants, to model naturally occurring and atmospherical- ly relevant complex surfaces of extended water bodies and aqueous aerosols. We investigated partitioning, orientation, solvation, as well as structure and morphol- ogy of the individual components and their mixture at water/vapor interfaces at different temperatures in order to validate our computational model and com- plement experimental data with molecular-level details. First, we have shown that halocarbon molecules adsorbed on amorphous ice nanoparticles at 100 K remain mostly isolated and do not form aggregates, in contrast to their cluste- ring on cryogenic argon nanoparticles. Next, we report that chloro-, bromo-, and iodoalkanes with short alkyl chains (up to C5) exhibit high preference for the outermost region of the water/vapor interface. Their average residence times of several...
Computer modeling of ion protein interactions: Allo steric effects of phenolic ligands and ions on insulin hexamer struct ure
Palivec, Vladimír ; Jungwirth, Pavel (advisor) ; Fišer, Jiří (referee)
Title: Computer modeling of ion protein interactions: Allosteric effects of phenolic ligands and ions on insulin hexamer structure Author: Vladimír Palivec Department: Department of Physical and Macromolecular Chemistry Faculty of Science UK Advisor: prof. RNDr. Pavel Jungwirth, DSc., IOCB AS CR, v.v.i. Advisor's email address: pavel.jungwirth@uochb.cas.cz Abstract: Insulin hexamer is an allosteric protein capable of undergoing conformational changes between three states: T6, T3R3, and R6. Transitions between them, as well as the formation of insulin hexamers, are mediated through binding of phenolic ligands or ions. This thesis presents a molecular dynamics study of allosteric behavior of insulin using empirical force fields. Two effects are closely inspected - cation (Zn2+ , Ca2+ , K+ , and Na+ ) binding to the insulin hexamers and a possible binding of two neurotransmitters - dopamine and serotonin to the phenolic pocket. The results show that high charge density cations (Zn2+ and Ca2+ ) are mostly localized in the B13 glutamate cavity, slow- down diffusion, while preventing other cations from entering. In contrast, low charge density cations (Na+ and K+ ) do not have this effect. Concerning neurotransmitters, dopamine does not bind to the phenolic pocket whereas serotonin binds in a similar way like...
Ion Specific Hofmeister Effects on Peptides and Proteins
Hladílková, Jana ; Jungwirth, Pavel (advisor) ; Ettrich, Rüdiger (referee) ; Horinek, Dominik (referee)
Title: Ion Specific Hofmeister Effects on Peptides and Proteins Author: Ing. Jana Hladílková Department: Physical and Macromolecular Chemistry Advisor: Prof. Pavel Jungwirth, DSc., IOCB AS CR Advisor's email address: pavel.jungwirth@uochb.cas.cz Abstract: Classical molecular dynamics simulations in combination with advanced methods of analysis were used to shed light on missing parts of our molecular understanding of the Hofmeister series. In tandem with various experimental techniques, real proteins as well as model systems were investigated in aqueous salt solutions in order to identify and quantify ion-protein interactions either leading or not leading to the canonical cationic and anionic Hofmeister ordering. The potassium cation was found to significantly enhance the BHMT enzymatic activity in contrast to the rest of the common monovalent cations. In the quest to rationalize this behavior, a key potassium binding site in the vicinity of the active site was discovered and described. Moreover, the exceptionally strong effect of K+ on the enzymatic activity was explained by hydration properties of the cations within the limited space of the active site in interplay with their attraction to the nearby negatively charged residues. By contrast, only a small and indirect influence, which follows the cationic...
Solvent effects on ion pairing and photoionization in water
Pluhařová, Eva ; Jungwirth, Pavel (advisor) ; Nachtigall, Petr (referee) ; Laage, Damien (referee)
Title: Solvent effects on ion pairing and photoionization in water Author: Mgr. et Ing. Eva Pluhařová Department: Physical and Macromoleculer Chemistry Advisor: Prof. Pavel Jungwirth, DSc., IOCB AS CR, v.v.i. Advisor's e-mail address: pavel.jungwirth@uochb.cas.cz Abstract: Various methods of theoretical chemistry, namely classical molecular dynamics simulations with empirical force fields, ab initio molecular dynamics, enhanced sampling methods, and ab initio calculations were used to provide new insight into ion pairing and photoionization in aqueous solutions. Systems mod- eling aqueous solutions of decreasing size were investigated by computational methods of increasing level of sophistication. In a classical molecular dynamics study of concentrated lithium salt solutions, the electronic continuum correction to account for polarization provided qualita- tive improvement over the conventional non-polarizable force fields and enabled molecular interpretation of neutron scattering measurements. The same model- ing approach was also successful in predicting the affinity of halide ions to the solution/oil interface. By combining ab initio molecular dynamics and potential of mean force cal- culations, we designed a reliable computational protocol for calculating the free energy profile for an ion pair...
Structure, dynamics and reactivity of the hydrated electron
Uhlig, Frank ; Jungwirth, Pavel (advisor) ; Pittner, Jiří (referee) ; Sebastiani, Daniel (referee)
Structure, dynamics and reactivity of the hydrated electron Frank Uhlig In this work, one of the products of ionization of water, namely the hydrated electron, has been investigated. The hydrated electron is a key-intermediate in aqueous radiation chemistry. Although known to exist for over 50 years, its structure remained elusive and under discussion up to the present day. We show in this work, that we can obtain a faithful picture of the hydrated electron, its equilibrium structure, dynamics after attachment to water, and its reactivity, using ab initio methods. To this end, small cluster models and extended bulk and slab geometries of water including an excess electron have been investigated.
Simulation of processes in cellular membranes
Timr, Štěpán ; Jungwirth, Pavel (advisor) ; Pittner, Jiří (referee)
Probing orientations of fluorescent molecules embedded in or attached to cell membranes has a great potential to reveal information on membrane structure and processes occurring in living cells. In this thesis, we first describe one- and two-photon linear dichroism measurements on a fluorescent probe embedded in a phospholipid membrane with a well- defined lipid composition. On the basis of experimental data, we determine the distribution of the angle between the one-photon transition dipole moment of the probe and the membrane normal. At the same time, we perform molecular dynamics simulations of the fluorescent probe and quantum calculations of its one-photon and two-photon absorption properties. By comparing the orientational distribution gained from experiments with that predicted by simulations, we test the ability of linear dichroism measurements to report on the orientation of a fluorescent molecule in a lipid membrane. We also examine the applicability of molecular simulations as a basis for the interpretation of experimental data.
Computer modelling of biomolecules - potential chemoterapeutics
Maláč, Kamil ; Barvík, Ivan (advisor) ; Jungwirth, Pavel (referee) ; Ettrich, Rüdiger (referee)
Classical molecular dynamics simulations were applied on complexes of RNA-dependent RNA-polymerase, Ribonuclease H, Argonaute and Ribonuclease L with chemically modified nucleic acids, which are studied as potential chemotherapeutic agents. Powerful graphics processing units, through which these molecular dynamics simulations were performed, enabled to acquire trajectory length from hundreds of nanoseconds to one microsecond. Molecular dynamics simulations allowed capture differences in binding of various modified nucleic acids to the above mentioned enzymes. These identified differences fitted well with experimental results. It opens the door for rational design of the structure of potential chemotherapeutic agents based on chemically modified nucleic acids.

National Repository of Grey Literature : 40 records found   beginprevious21 - 30next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.