No exact match found for Hrabina,, Jan, using Hrabina Jan instead...
National Repository of Grey Literature 108 records found  previous11 - 20nextend  jump to record: Search took 0.10 seconds. 
Frequency references and dissemination
Hrabina, Jan ; Pravdová, Lenka ; Šarbort, Martin ; Čížek, Martin ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Číp, Ondřej
The work deals with an overview of research topics of the “Frequency references and dissemination” group, Department of Coherence Optics, Institute of Scientific Instruments, Czech Academy of Sciences. These topics include frequency locking of lasers by laser spectroscopy and high-finnese optical cavities, digital holography and optical frequency tranfers through fiber and free-space optical links.
System of frequency standards at the ISI
Čížek, Martin ; Hrabina, Jan ; Pravdová, Lenka ; Číp, Ondřej
The contribution presents a system of frequency standards developed at the Institute of Scientific Instruments of the Czech Academy of Sciences. It discusses the need for highly coherent optical frequency references for demanding experiments in spectroscopy with cooled atoms. The system comprises interconnected standards operating in the radiofrequency and optical parts of the electromagnetic spectrum, including an active hydrogen maser, a fiber laser locked to a high-finesse optical resonator, and an optical frequency comb. The relative frequency stability of these standards is analyzed, highlighting their suitability for different integration times and applications. The article also describes the experimental setup for comparing the stability of the frequency standards at the Institute of Scientific Instruments with those at the BEV laboratory in Vienna using a stabilized phase-coherent optical fiber link. The results demonstrate the excellent stability of the frequency standards reaching the -15th order of magnitude, essential for spectroscopy and ion trapping experiments.
SMV-2023-36: Wuhan Space
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency reference intended for the frequency stabilisation of ultra-compact semiconductor laser sources. This optical reference is based on an absorption cell filled with ultra-pure absorption gases, and it allows precise locking of the lasers with laser spectroscopy methods. The cell will serve as a reference of optical frequencies in systems of laser standards (532-633 nm wavelengths).
SMV-2023-35: NIM Multipass
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency references intended for the frequency stabilisation of ultra-compact laser sources. These optical references are based on absorption cells filled with ultra-pure absorption gases and they allow precise locking of the lasers with the methods of laser spectroscopy. The cells will serve as the references of optical frequencies in systems of laser standards (532 nm wavelengths).
SMV-2023-34: ULM2023
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency reference intended for the frequency stabilisation of ultra-compact semiconductor laser sources. This optical reference is based on an absorption cell filled with ultra-pure absorption gases, and it allows precise locking of the lasers with laser spectroscopy methods. The cell will serve as a reference of optical frequencies in systems of laser standards (532-633 nm wavelengths).
SMV-2023-31: JAXA 2023
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency references intended for the frequency stabilisation of ultra-compact laser sources. These optical references are based on absorption cells filled with ultra-pure absorption gases and allow precise locking of the lasers with laser spectroscopy methods. The cells will serve as the references of optical frequencies in systems of laser standards intended for space-related research (515-633 nm wavelengths).
SMV-2023-33: HeNe2023
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency references intended for the frequency stabilisation of ultra-compact laser sources. These optical references were based on absorption cells filled with ultra-pure absorption gases and they allow precise locking of the lasers with the methods of laser spectroscopy. The cells will serve as the references of optical frequencies in systems of primary length standards (633 nm wavelength).
SMV-2023-32: LPP 3LIF
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency references intended for laser-induced fluorescence and laser spectroscopy research. These optical references are based on absorption cells filled with ultra-pure absorption gases.
SMV-2023-30: ILA compact
Hrabina, Jan ; Holá, Miroslava ; Oulehla, Jindřich ; Pokorný, Pavel ; Lazar, Josef ; Šarlejová, Tatiana ; Šlechtický, Stanislav
The contractual research was oriented towards the development of optical frequency reference intended for the frequency stabilisation of ultra-compact semiconductor laser sources. This optical reference is based on an absorption cell filled with ultra-pure absorption gases, and it allows precise locking of the lasers with laser spectroscopy methods. The cell will serve as a reference of optical frequencies in systems of laser standards (532-633 nm wavelengths).
Optical cavity for ultra-narrow linewidth laser system
Pravdová, Lenka ; Hrabina, Jan ; Čížek, Martin ; Číp, Ondřej ; Procháska, František ; Beneš, Jiří
We designed an optical resonator cavity for narrowing standard commercial laser to sub-Hz linewidth. The optical Fabry Perot resonator is designed hemispherical with all components from ULE material and zero crossing temperature at 33°C. The support Zerodur shelf is isolated from the resonator by two Viton O-rings. The resonator is located in an Aluminium chamber with direct temperature stabilization. 2nd temperature stabilisation is provided by 4 Peltier modules enabling heat exchange between the copper jacket and the assembly surroundings. The stainless-steel jacket has passive isolation and protective function.

National Repository of Grey Literature : 108 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.