National Repository of Grey Literature 20 records found  previous11 - 20  jump to record: Search took 0.00 seconds. 
The function of ABCF proteins in bacteria
Mičke, Bianka ; Balíková Novotná, Gabriela (advisor) ; Lišková, Petra (referee)
Translation belongs to the most basic processes which happens in the living cells. It is the last step of proteosynthesis when genetic information encoded by the mRNA is transformed into the protein on a ribosome. Organisms have developed a wide range of mechanisms that can regulate it's needs. I focused on one of them - ABCF proteins. This protein group is a member of the ABC transporters superfamily but they haven't a transmembrane domain and their purpose is protect the ribosomes from antibiotics that bind 50S ribosomal subunit or interact with the ribosomes and influence ribosomal functions. Today, we can divide ABCF proteins into the two functional groups: antibiotic resistence proteins (ARE) and proteins with the regulatory functions. The translational regulatory function has been confirmed There is 45 ABCF protein subfamilies spread through the bacteries and eukaryotes but many essential informations like the structure and exact function of them are still missing. My bachelor thesis is analysis and summary of facts that are known about the bacterial ABCF proteins. Key words: ABCF proteins, antibiotic resistence, ARE, translational regulation, ribosome, translation, translational factors
The function of ClpX chaperone in bacteria
Kýr, Jan ; Balíková Novotná, Gabriela (advisor) ; Šiková, Michaela (referee)
Intracellular proteolysis is an essential regulatory process that affects cellular physiology. Since proteolysis destroys proteins irreversibly, this process must be strictly controlled. The AAA+ proteins are the key factors in regulated proteolysis in bacteria. These proteins consist of two functional domains, the AAA+ chaperone domain and the protease domain. One particular group of these AAA+ protein is the Clp protein family. Functional domains of the Clp family are formed by seperate proteins. The hexameric unfoldase ClpX is a member of this protein family. This unfoldase can interact with the highly conserved ClpP protease to form a ClpXP proteolytic complex. This proteolytic complex utilizes the energy of ATP binding and hydrolysis to unfold and translocate the specifically tagged substrate into the ClpP degradation chamber. Substrate recognition is mediated by the binding of ClpX to short unstructured sequences called degradation tags. ClpX recognizes several degradation tags, but the most important one is recognition of the ssrA degradation tag, which is the output of the tmRNA ribosome rescue system. Although ClpX interacts with ClpP, it affects a variety of cellular processes such as the expression of virulence factors or the adaptation to stress factors, ClpX can work independently of...
Control of the gene expression by cis-acting non-coding RNAs and their importance in regulating genes conferring resistance to antibiotics
Novotná, Michaela ; Balíková Novotná, Gabriela (advisor) ; Pospíšil, Jiří (referee)
This work is focused on the regulation of gene expression mediated by intrinsic regulatory RNA elements that are part of the 5' end of mRNA untranslated region. These so-called r5'UTR elements are able to bind a wide spectrum of different types of molecules, from ions and small metabolites through the transfer RNA to large protein complexes. Based on this interaction, they modulate the expression of downstream gene, which therefore becomes inducible. This type of riboregulation is widely spread in bacteria and is employed even in the control of many antibiotic resistance genes. Modulation of such genes is considerably advantageous for the cell, as it provides reduction of the negative impact on the fitness of bacteria, which is often connected to the expression of resistance genes. The aim of this work is at the molecular level to characterize all types of intrinsic regulatory elements and outline how the knowledge of these systems could be used in clinical practise for the treatment of infections caused by bacteria resistant to antibiotics. Key words Regulation of gene expression, ncRNA, cis-acting regulatory RNA, r5'UTR element, attenuation, antibiotic resistance
Characterization of the ABC-F protein Sco0636 in Streptomyces coelicolor
Pinďáková, Nikola ; Balíková Novotná, Gabriela (advisor) ; Mikušová, Gabriela (referee)
The main topic of this diploma thesis is ARE (resistance) proteins from the ABC-F family of the second class of ABC proteins. ARE proteins confer resistance to antibiotics that bind to a large ribosomal subunit and therefore inhibit proteosynthesis. One of the ARE proteins is the Lmr (C) protein, which is part of the linkomycin biosynthesis cluster of Streptomyces lincolnensis, and according to new results, Lmr (C) does not have to be just resistant protein but may have also regulatory function. We decided to study Sco0636, the closest homologue to Lmr (C) in Streptomyces coelicolor, which is a model organism in the study of secondary metabolism. Thanks to the production of color pigments, it is possible to monitor the effect of ARE proteins on secondary metabolism directly on the plates. I prepared the deletion mutant and the strain with constitutive expression of sco0636, and observed the effect on the phenotype. I followed the production of a blue asset and set a minimum inhibitory concentration to selected antibiotics, which bind to the ribosome. I have found that Sco0636 gives high resistance to tiamulin and so it has been named TiaA. The deletion of gene sco0636 accelerated production of actinorodine, and constitutive expression of this gene slowed down production. Keywords: ABC proteins,...
Subcellular localization of resistant proteins Vga(A)LC and Msr(A) using fluorescence microscopy
Nguyen Thi Ngoc, Bich ; Balíková Novotná, Gabriela (advisor) ; Lichá, Irena (referee)
Vga(A)LC and Msr(A) are clinically significant resistant proteins in staphylococci that confer resistance to translational inhibitors. They belong to ARE ABC-F protein subfamily, which is part of ABC transporters. Unlike typical ABC transporters, ABC-F proteins do not have transmembrane domains that are responsible for the transport of substances through the membrane. Therefore, they do not have characteristic transport function but regulatory or resistance function. Their mechanism of action on the ribosome has been described only recently, where these proteins displace the antibiotic from the ribosome. However, some aspects of their function are still unclear. For example, what is the function of the Vga(A) location on a membrane that has been detected in the membrane fraction but not in the ribosomal. In this work, using fluorescence microscopy, I observed subcellular localization of the Vga(A)LC-mEos2, Vga(A)LC-GFP and Msr(A)-eqFP650 resistant fusion proteins in live cells of S. aureus under different culture conditions . It has been shown that Vga(A)LC-GFP and Msr(A)-eqFP650 occur in a foci near the membrane. Depending on ATPase activity or the presence of an antibiotic, the localization of Msr(A)-eqFP650 in the cell changes from focal to diffuse, presumably on ribosomes, suggesting a...
Development and genetic basis of glycopeptide resistance in coagulase-negative staphylococci
Prášilová, Jana ; Balíková Novotná, Gabriela (advisor) ; Lišková, Petra (referee)
Glycopeptides are the so-called last-resort antibiotics in clinical practice used to treat heavier, predominantly nosocomial infections caused by multi-resistant coagulase-negative staphylococci. The origin and genetic basis of resistance to glycopeptide antibiotics has not yet been elucidated within coagulase-negative staphylococci. Research on Staphylococcus aureus has shown, that intermediate resistance to glycopeptide antibiotics is associated with the presence of one or more mutations, rather than being conditioned by the support of a particular genetic element, such as in enterococci. By using various types of in vitro resistant mutant selection, we were able to obtain isogenic pairs of glycopeptide sensitive and resistant strains of Staphylococcus epidermidis and Staphylococcus haemolyticus. By sequencing the genomes of these pairs, one nucleotide polymorphisms were identified and predominantly found in metabolic and cell wall control systems. Phenotypic analysis did not reveal a direct association of glycopeptide resistance with increased biofilm formation. In clinical practice, the cross-resistance of glycopeptides and other antibiotics is problematic. For the non-glycopeptide antibiotics imipenem and rifampicin, the incidence of cross-resistance with glycopeptide antibiotics in S. aureus...
Influence of expression of lmr(C) on the biosynthesis of lincomycin in Streptomyces lincolnensis: Resistance or production?
Veselá, Ludmila ; Balíková Novotná, Gabriela (advisor) ; Beranová, Jana (referee)
The genus Streptomyces produces more than a half of the known bioactive substances, ranking it among the most important bacterial taxons. Streptomyces lincolnensis ATCC 25466 encodes a biosynthetic gene cluster for lincomycin biosynthesis in its genome. Apart from the biosynthetic and regulatory genes, the cluster also contains three resistance genes, lmr(A), lmr(B) a lmr(C), which could protect of the host from the toxicity of a synthesized antibiotic. The Lmr(C) protein belongs to ARE proteins which generaly confer resistance to clinically important classes of antibiotics: macrolides, streptogramins, lincosamides and pleuromutilins. In addition to antibiotic producers, ARE proteins are also present in pathogenic microorganisms. However, the resistance mechanism conferred by these protins which belong to ABC transporters, even though they lack the transmembrane domain, have not been characterized yet. This makes the ARE proteins an interesting subject of the research. Using deletion mutants in resistance genes lmr(A), lmr(B) a lmr(C) we studied their effect on the lincomycin production and resistance to lincosamides, lincomycin and clindamycin with special focus on the function of the lmr(C). We have found that deletion of lmr(C) does not significantly influence lincomycin production and...
The effect of vanZTei and vanZg expression on resistance to glycopeptide antibiotics in Staphylococcus aureus
Zieglerová, Leona ; Balíková Novotná, Gabriela (advisor) ; Lichá, Irena (referee)
A membrane protein VanZTei which is encoded by the gene vanZ from the vanA glycopeptide resistance gene cluster is a part of the large family of VanZ proteins. VanZTei confers resistance to teicoplanin in Enterococcus faecalis without the presence of other proteins encoded by the cluster. The aim of my work was to compare the ability of two orthologous proteins VanZTei and VanZg (from the genome of Enterococcus faecium) to confer resistance to glycopeptides in Staphylococcus aureus RN4220 and Enterococcus faecium. We have shown that VanZg increases resistance to teicoplanin (Tei) 8 to 16 times the and also to dalbavancin (Dalb) 8 times. VanZTei also confers resistance to Tei and Dalb, but the increase is only twofold. Conversely VanZTei confers resistance to newly synthetized glycopeptides more effectively than VanZg (fourfold increase of resistance confered by VanZTei and two to fourfold increase of resistance confered by VanZg). It suggests that both proteins have different specificity to antibiotics. In despite the mutants of S. aureus RN4220 VanZTei pRMC2 with increased resistance to teicoplanin (MICTei> 8 µg/ml) in which the resistance is dependent on vanZTei expression were selected. These resistant mutants do not carry mutation in a gene vanZTei or in its ribosomal binding site. Neither of the...
The effect of aminoacid variability on the resistance phenotype in ARE subfamily of ABC proteins
Lenart, Jakub ; Balíková Novotná, Gabriela (advisor) ; Fišer, Radovan (referee)
ARE subfamily proteins belonging to ABC transporters confers a different degree of resistance to macrolides, linkosamides and streptogramins antibiotics. Among the most clinically ARE subfamily proteins in staphylococci is Vga(A) protein lead to the award resistance to streptogtramins A. In 2006, discovered the new variant called the Vga(A)LC, which in addition to streptogramins A resistance also confers linkosamides. Vga(A) and Vga(A)LC differ in only 7 amino acids, yet confer different resistance phenotypes. In previous experiments it was found that the central role in determining substrate specificity play a 4 amino acid differences that accumulate in the section of 15 amino acids within the linker connecting the two ABC domains (positions 212, 219, 220 and 226). The combination of amino acids LGAG Vga(A) increases resistance to streptogramins A while present in combination SVTS Vga(A)LC increased resistance to linkosamides. Although in this subfamily includes a large number of resistance proteins, the mechanism of resistance has not yet been established with certainty. The aim was to create a new Vga(A) variants that contain specific combinations of amino acids for Vga(A) and Vga(A)LC protein at positions 212, 219, 220 and 226 and compared their ability to grant resistance to linkosamides. We also...
Antibiotic resistance conferred by members of ARE subfamily of ABC proteins
Veselá, Ludmila ; Balíková Novotná, Gabriela (advisor) ; Borčin, Kateřina (referee)
The main topic of this thesis is the ARE subfamily of ABC transporters. The importance of the proteins of this subfamily lies in the fact that they confer resistance to several classes of clinically important antibiotics: macrolides, lincosamides, streptogramines and pleuromutilines and they do it in significant pathogens, as for example Staphylococcus aureus. Compared to canonical ABC transporters, the structure of ABC proteins lacks the transmembrane domain (TMD) and so far, there where not even found an integrating transmembrane protein. Due to these facts, the mechanism of resistance conferred by these proteins remains unclear. In the thesis, both suggested hypotheses of the mechanism of how these proteins work are discussed. The first hypothesis presumes the active efflux of antibiotics out of the bacteria. The second hypothesis suggests release of antibiotic from its binding site initiated by ARE proteins, followed by its passive diffusion out of the cell. Keywords: ABC proteins, ARE proteins, resistance, MLS, Vga

National Repository of Grey Literature : 20 records found   previous11 - 20  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.