Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Models for predicting the thermal sensation and thermal comfort of a person
Nahácky, Marek ; Pokorný, Jan (oponent) ; Kopečková, Barbora (vedoucí práce)
The bachelor thesis is focused on mapping of the current development of thermophysiological models for prediction of human thermal sensation and thermal comfort in thermal environment. These models vary in broad spectrum of conditions of their use. The first part is dedicated to definition of terms thermal sensation and thermal comfort. The second part focuces on comparison and more precise description of chosen thermophysiological models. At the end it was made a summarizing table of inputs and outputs of these models for prediction.
Metodika pro testování prostředí v kabině osobního vozu s využitím tepelného manekýna a testovacích osob
Toma, Róbert ; Tuhovčák, Ján (oponent) ; Fišer, Jan (vedoucí práce)
V tejto diplomovej práci je spracovaný návrh testovacej procedúry pre inovatívny systém HVAC. Návrh bol vytvorený testovaním vo viacerých fázach pomocou manekýna Newtona a respondentov v klimakomore na VUT v Brne. Postupným vyhodnotením týchto fáz bol zistený vzájomný vzťah a relevantnosť výsledkov od manekýna a testovacích osôb a po každej fáze boli navrhnuté úpravy procedúry. V práci sú tiež uvedené základy termoregulácie ľudského tela, faktory ovplyvňujúce tepelnú pohodu a rôzne spôsoby jej merania a vyhodnocovania pomocou viacerých stupníc a diagramu komfortných zón. Práca ďalej obsahuje dotazník pre testovanie tepelného komfortu a stupnice použité pri jeho vyplňovaní. Na záver je uvedený spôsob vyhodnotenia korelácie výsledkov z merania tepelného komfortu pomocou manekýna a testovacích osôb, ako aj finálny návrh testovacej procedúry, ktorá bude použitá pri kalibrácii a overovaní správneho fungovania iHVAC systému.
Assesment of the Thermal Environment in Vehicular Cabins
Fojtlín, Miloš ; Khoury, Roch El (oponent) ; Havenith, George (oponent) ; Jícha, Miroslav (vedoucí práce)
People in developed countries spend substantial parts of their lives in indoor environments both during free time and while working. For this reason, there has been increasing interest in the quality of the indoor environment. The main emphasis of past research has been directed towards understanding the fields of human health, productivity, and comfort. One important contributor to all three fields is the thermal aspect of the environment, which is often represented by physical quantities such as air temperature, radiant temperature, air humidity, and air velocity. While weather-independent control of these parameters is possible via heating, ventilation, and air-conditioning systems (HVAC), a major limitation is that these systems are related to substantial energy consumption and carbon footprint. The complexity of thermal management is amplified in vehicular cabins because of their asymmetric and transient nature. Moreover, in electric vehicles, the available energy for microclimate management comes at the cost of driving range, and therefore, new solutions for more effective and human-centred ways of managing the indoor microclimate are sought. One of the promising ways to address these issues is via local conditioning with the vehicle seats or auxiliary radiant panels operating in synergy with an HVAC unit. At the same time, the optimization and research tasks are being shifted towards virtual investigation to mitigate the need for costly and often ethically concerning human studies. To do so, models of human thermo-physiology and thermal sensation/comfort have been developed. Yet, for their reliable applications, many factors regarding high heterogeneity, clothing, the thermal mass of the adjacent surfaces, and active seat conditioning have not been resolved. The aim of this thesis was to develop a methodology to assess human thermal sensation while in a sitting body position, including local conditioning factors such as heated and ventilated seats. A requirement of the method was applicability in both virtual and real indoor spaces. In the latter case, the focus was a thermal-sensation-driven feedback loop allowing for human-centred microclimate management. The validity of the proposed methodology was demonstrated under typical cabin conditions (5–41 °C) and the findings from this PhD project are transferable to a broad variety of engineering fields. In passenger transport and occupational environments with higher heat strain, environmental engineers can benefit from a tool to identify sources of thermal discomfort and potential hazards of fatigue. Furthermore, the methodology can be of great merit to the rapidly developing electric vehicle industry, facilitating emphasis on energy efficient microclimate management. The virtual optimization of the conditioning strategies reduce the need for human studies, allow rapid prototyping, and have great potential to bring energy savings as well as increased driving range. Finally, the know-how presented is also applicable in built environments, where similar conditions apply.
Assesment of the Thermal Environment in Vehicular Cabins
Fojtlín, Miloš ; Khoury, Roch El (oponent) ; Havenith, George (oponent) ; Jícha, Miroslav (vedoucí práce)
People in developed countries spend substantial parts of their lives in indoor environments both during free time and while working. For this reason, there has been increasing interest in the quality of the indoor environment. The main emphasis of past research has been directed towards understanding the fields of human health, productivity, and comfort. One important contributor to all three fields is the thermal aspect of the environment, which is often represented by physical quantities such as air temperature, radiant temperature, air humidity, and air velocity. While weather-independent control of these parameters is possible via heating, ventilation, and air-conditioning systems (HVAC), a major limitation is that these systems are related to substantial energy consumption and carbon footprint. The complexity of thermal management is amplified in vehicular cabins because of their asymmetric and transient nature. Moreover, in electric vehicles, the available energy for microclimate management comes at the cost of driving range, and therefore, new solutions for more effective and human-centred ways of managing the indoor microclimate are sought. One of the promising ways to address these issues is via local conditioning with the vehicle seats or auxiliary radiant panels operating in synergy with an HVAC unit. At the same time, the optimization and research tasks are being shifted towards virtual investigation to mitigate the need for costly and often ethically concerning human studies. To do so, models of human thermo-physiology and thermal sensation/comfort have been developed. Yet, for their reliable applications, many factors regarding high heterogeneity, clothing, the thermal mass of the adjacent surfaces, and active seat conditioning have not been resolved. The aim of this thesis was to develop a methodology to assess human thermal sensation while in a sitting body position, including local conditioning factors such as heated and ventilated seats. A requirement of the method was applicability in both virtual and real indoor spaces. In the latter case, the focus was a thermal-sensation-driven feedback loop allowing for human-centred microclimate management. The validity of the proposed methodology was demonstrated under typical cabin conditions (5–41 °C) and the findings from this PhD project are transferable to a broad variety of engineering fields. In passenger transport and occupational environments with higher heat strain, environmental engineers can benefit from a tool to identify sources of thermal discomfort and potential hazards of fatigue. Furthermore, the methodology can be of great merit to the rapidly developing electric vehicle industry, facilitating emphasis on energy efficient microclimate management. The virtual optimization of the conditioning strategies reduce the need for human studies, allow rapid prototyping, and have great potential to bring energy savings as well as increased driving range. Finally, the know-how presented is also applicable in built environments, where similar conditions apply.
Models for predicting the thermal sensation and thermal comfort of a person
Nahácky, Marek ; Pokorný, Jan (oponent) ; Kopečková, Barbora (vedoucí práce)
The bachelor thesis is focused on mapping of the current development of thermophysiological models for prediction of human thermal sensation and thermal comfort in thermal environment. These models vary in broad spectrum of conditions of their use. The first part is dedicated to definition of terms thermal sensation and thermal comfort. The second part focuces on comparison and more precise description of chosen thermophysiological models. At the end it was made a summarizing table of inputs and outputs of these models for prediction.
Metodika pro testování prostředí v kabině osobního vozu s využitím tepelného manekýna a testovacích osob
Toma, Róbert ; Tuhovčák, Ján (oponent) ; Fišer, Jan (vedoucí práce)
V tejto diplomovej práci je spracovaný návrh testovacej procedúry pre inovatívny systém HVAC. Návrh bol vytvorený testovaním vo viacerých fázach pomocou manekýna Newtona a respondentov v klimakomore na VUT v Brne. Postupným vyhodnotením týchto fáz bol zistený vzájomný vzťah a relevantnosť výsledkov od manekýna a testovacích osôb a po každej fáze boli navrhnuté úpravy procedúry. V práci sú tiež uvedené základy termoregulácie ľudského tela, faktory ovplyvňujúce tepelnú pohodu a rôzne spôsoby jej merania a vyhodnocovania pomocou viacerých stupníc a diagramu komfortných zón. Práca ďalej obsahuje dotazník pre testovanie tepelného komfortu a stupnice použité pri jeho vyplňovaní. Na záver je uvedený spôsob vyhodnotenia korelácie výsledkov z merania tepelného komfortu pomocou manekýna a testovacích osôb, ako aj finálny návrh testovacej procedúry, ktorá bude použitá pri kalibrácii a overovaní správneho fungovania iHVAC systému.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.