Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Evaluation of Fracture Mechanical Parameters for Bi-Piezo-Material Notch
Hrstka, Miroslav ; Materna, Aleš (oponent) ; Náhlík, Luboš (oponent) ; Profant, Tomáš (vedoucí práce)
The presented dissertation thesis deals with evaluation of the leading terms of the Williams asymptotic expansion describing an in-plane electro-elastic field at the tip of piezoelectric bi-material notches and interface cracks using the expanded Lekhnitskii-Eshelby-Stroh formalism in connection to the pure anisotropic elasticity. It is demonstrated that the expanded Lekhnitskii-Eshelby-Stroh formalism with modern Python programming concepts represents an effective theoretical as well as a practical tool for the fracture analysis of piezoelectric bi-materials. The theoretical part of the thesis outlines aspects of anisotropic elasticity and their connection with piezoelectric materials. The governing equations focused on special types of monoclinic piezoelectric materials, which enable decoupling to the in-plane and anti-plane problem, are introduced via the complex potentials. In the practical part of the thesis, the eigenvalue problem of a bi-material notch is proposed in order to determine the singularity exponents as well as the generalized stress intensity factors by application of the two-state -integral. All relations and numerical procedures are applied to the pure anisotropic and subsequently expanded to the piezoelectric fracture problem of bi-material notches and deeply investigated in the numerical examples. A special attention is paid to the change of the asymptotic solution connected with the transition of a very closed notch into an interface crack. Also the influence of arbitrary oriented poling directions upon asymptotic solution is investigated. The accuracy of calculations of the generalised stress intensity factors is tested by comparing the asymptotic solutions with results obtained by the finite element method using a very fine mesh. Finally, the formalism is modified for non-piezoelectric media such as conductors and insulators.
Evaluation of Fracture Mechanical Parameters for Bi-Piezo-Material Notch
Hrstka, Miroslav ; Materna, Aleš (oponent) ; Náhlík, Luboš (oponent) ; Profant, Tomáš (vedoucí práce)
The presented dissertation thesis deals with evaluation of the leading terms of the Williams asymptotic expansion describing an in-plane electro-elastic field at the tip of piezoelectric bi-material notches and interface cracks using the expanded Lekhnitskii-Eshelby-Stroh formalism in connection to the pure anisotropic elasticity. It is demonstrated that the expanded Lekhnitskii-Eshelby-Stroh formalism with modern Python programming concepts represents an effective theoretical as well as a practical tool for the fracture analysis of piezoelectric bi-materials. The theoretical part of the thesis outlines aspects of anisotropic elasticity and their connection with piezoelectric materials. The governing equations focused on special types of monoclinic piezoelectric materials, which enable decoupling to the in-plane and anti-plane problem, are introduced via the complex potentials. In the practical part of the thesis, the eigenvalue problem of a bi-material notch is proposed in order to determine the singularity exponents as well as the generalized stress intensity factors by application of the two-state -integral. All relations and numerical procedures are applied to the pure anisotropic and subsequently expanded to the piezoelectric fracture problem of bi-material notches and deeply investigated in the numerical examples. A special attention is paid to the change of the asymptotic solution connected with the transition of a very closed notch into an interface crack. Also the influence of arbitrary oriented poling directions upon asymptotic solution is investigated. The accuracy of calculations of the generalised stress intensity factors is tested by comparing the asymptotic solutions with results obtained by the finite element method using a very fine mesh. Finally, the formalism is modified for non-piezoelectric media such as conductors and insulators.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.