Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.01 vteřin. 
Quantitative Imaging in Scanning Electron Microscope
Skoupý, Radim ; Buršík, Jiří (oponent) ; Shimoni, Eyal (oponent) ; Krzyžánek, Vladislav (vedoucí práce)
This thesis deals with the possibilities of quantitative imaging in scanning (transmission) electron microscope (S|T|EM) together with its correlative applications. It starts with quantitative STEM (qSTEM) method description, where estimated local sample thickness can be related to irradiated dose and create a mass-loss study, which was applied on samples of ultrathin epoxy resin sections at variate conditions (age, temperature, staining, plasma cleaning, carbon covering, probe current). The possibilities of the detector calibration process, the necessary background of the Monte Carlo simulations of electron scattering and achievable accuracy of the method are discussed and demonstrated. The method is then extrapolated for the use of back-scattered electron (BSE) detector, where new detector calibration technique, based on primary beam deflection on electron mirror, was postulated, developed and tested on various thin coating layers with thicknesses in range from 1 to 25 nm. The use of BSE detector brings the opportunity to measure the thickness of not only the electron transparent samples as in case of qSTEM, but also thin layers on substrates – qBSE. Both above-mentioned methods (qSTEM and qBSE) are intensity-based. This brings complication in the need of proper calibration, where just a slight drift of base-signal level causes a significant change of the results. This insufficiency was overcome in case of qSTEM by using the most probable scattering angle (captured by pixelated STEM detector) instead of an integral image intensity captured by an annular segment of STEM detector. The advantage of this method is its applicability post-acquisition, where no special previous actions are needed before each imaging session. The disadvantage is the limited range of detectable thicknesses given by the peak creation in signal/scattering-angle dependency. In general, low thickness region is immeasurable as well as those too thick (usable thickness range for latex is 185 - 1,000 nm; given by detection geometry and pixel size). Moreover, multiple applications of conventional and commercially available quantitative techniques of cathodoluminescence (CL) and energy-dispersive X-ray spectroscopy (EDX) are presented in correlation with high-resolution images taken in secondary and transmitted electrons.
Charakterizace mechanických vlastností semi-IPN hydrogelů na bázi poly(vinylalkoholu)
Přibyl, Jiří ; Pekař, Miloslav (oponent) ; Kalina, Michal (vedoucí práce)
Tato diplomová práce se zabývá problematikou mechanických vlastností semi-IPN hydrogelů na bázi poly(vinylalkoholu). Připravené poly(vinylalkohol) hydrogely byly modifikovány přídavkem alginátu sodného, dextranu, DEAE-dextranu, chitosanu a poly(ethylenglykol). Následně byly mechanické vlastnosti připravených hydrogelů studovány za využití oscilačních amplitudových reologických test, dynamické mechanické analýzy, bobtnacích experimentů a sušících charakteristik. Mikrokalorimetrie byla využita pro posouzení interakcí mezi poly(vinylalkoholem) a biopolymery a v neposlední řadě byla morfologie připravených hydrogelů vizualizována za pomocí kryo-SEM. Hlavní předpoklad pro semi-IPN hydrogely je fakt, že dochází k minimálnímu ovlivnění mechanických vlastností, ale vede k modifikaci vazebných míst obsažených ve struktuře hydrogelu, což má velký potenciál při transportních vlastnostech. Z experimentálních výsledků byly stanoveny vlivy jednotlivých biopolymerů na mechanické vlastnosti. Ze získaných výsledků bylo patrné, že přídavky biopolymerů nemají významný vliv na mechanické vlastnosti poly(vinylakoholových) hydrogelů, avšak v případě bobtnacích experimentů dochází k významnému vlivu počtu cyklů mražení/tání, iontové síly prostředí a použitého biopolymeru
Quantitative Imaging in Scanning Electron Microscope
Skoupý, Radim ; Buršík, Jiří (oponent) ; Shimoni, Eyal (oponent) ; Krzyžánek, Vladislav (vedoucí práce)
This thesis deals with the possibilities of quantitative imaging in scanning (transmission) electron microscope (S|T|EM) together with its correlative applications. It starts with quantitative STEM (qSTEM) method description, where estimated local sample thickness can be related to irradiated dose and create a mass-loss study, which was applied on samples of ultrathin epoxy resin sections at variate conditions (age, temperature, staining, plasma cleaning, carbon covering, probe current). The possibilities of the detector calibration process, the necessary background of the Monte Carlo simulations of electron scattering and achievable accuracy of the method are discussed and demonstrated. The method is then extrapolated for the use of back-scattered electron (BSE) detector, where new detector calibration technique, based on primary beam deflection on electron mirror, was postulated, developed and tested on various thin coating layers with thicknesses in range from 1 to 25 nm. The use of BSE detector brings the opportunity to measure the thickness of not only the electron transparent samples as in case of qSTEM, but also thin layers on substrates – qBSE. Both above-mentioned methods (qSTEM and qBSE) are intensity-based. This brings complication in the need of proper calibration, where just a slight drift of base-signal level causes a significant change of the results. This insufficiency was overcome in case of qSTEM by using the most probable scattering angle (captured by pixelated STEM detector) instead of an integral image intensity captured by an annular segment of STEM detector. The advantage of this method is its applicability post-acquisition, where no special previous actions are needed before each imaging session. The disadvantage is the limited range of detectable thicknesses given by the peak creation in signal/scattering-angle dependency. In general, low thickness region is immeasurable as well as those too thick (usable thickness range for latex is 185 - 1,000 nm; given by detection geometry and pixel size). Moreover, multiple applications of conventional and commercially available quantitative techniques of cathodoluminescence (CL) and energy-dispersive X-ray spectroscopy (EDX) are presented in correlation with high-resolution images taken in secondary and transmitted electrons.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.