Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Design and Optimization of High-Torque Ferrite Assisted Synchronous Reluctance Motor
Knebl, Ladislav ; Rafajdus,, Pavol (oponent) ; DUŠEK,, Jiří (oponent) ; Vítek, Ondřej (vedoucí práce)
The high-torque assisted synchronous reluctance machine could be still considered, based on the relatively low amount of publications, as a rather unknown area of research. This and other main advantages, such as low manufacturing cost and a higher torque density of this machine type are driving researchers interest. Even though this machine type has become more interesting in the conventional or high-speed applications, the area of traction applications is slowly getting forward as the machine capabilities are discovered. This thesis is serving just this purpose of developing the ship propulsion driving motor, that is capable of sustaining the high-torque at low-speed. The application is defined by the 55 kW at 150 rpm using the low- cost ferrite magnets aiming to lower the cost. The design will be closely tied with optimization algorithms to deliver the best possible performance in the given volume. However the design challenge being difficult task on its own, the thesis is declaring other goals within, that are still very interesting and important. Since the optimization is included in the design process, the first goal, concluding from the given topic is to compare various optimization methods. Not only the two different optimization algorithms, self-organizing migrating algorithm and genetic algorithm, will be compared in the thesis, but even two multi-objective optimization approaches will be compared as well. The preference based vector and ideal multi-objective optimization techniques comparison will be demonstrated in one optimization scenario with a higher amount of optimized parameters. Other demonstrated goal within the thesis is the comparison of ideal multi-objective optimization with a lower number of parameters. The last goal will be the measurement of the designed and optimized machine, that introduced variety of challenges itself and all of them will be discussed within the last chapter.
Design and Optimization of High-Torque Ferrite Assisted Synchronous Reluctance Motor
Knebl, Ladislav ; Rafajdus,, Pavol (oponent) ; DUŠEK,, Jiří (oponent) ; Vítek, Ondřej (vedoucí práce)
The high-torque assisted synchronous reluctance machine could be still considered, based on the relatively low amount of publications, as a rather unknown area of research. This and other main advantages, such as low manufacturing cost and a higher torque density of this machine type are driving researchers interest. Even though this machine type has become more interesting in the conventional or high-speed applications, the area of traction applications is slowly getting forward as the machine capabilities are discovered. This thesis is serving just this purpose of developing the ship propulsion driving motor, that is capable of sustaining the high-torque at low-speed. The application is defined by the 55 kW at 150 rpm using the low- cost ferrite magnets aiming to lower the cost. The design will be closely tied with optimization algorithms to deliver the best possible performance in the given volume. However the design challenge being difficult task on its own, the thesis is declaring other goals within, that are still very interesting and important. Since the optimization is included in the design process, the first goal, concluding from the given topic is to compare various optimization methods. Not only the two different optimization algorithms, self-organizing migrating algorithm and genetic algorithm, will be compared in the thesis, but even two multi-objective optimization approaches will be compared as well. The preference based vector and ideal multi-objective optimization techniques comparison will be demonstrated in one optimization scenario with a higher amount of optimized parameters. Other demonstrated goal within the thesis is the comparison of ideal multi-objective optimization with a lower number of parameters. The last goal will be the measurement of the designed and optimized machine, that introduced variety of challenges itself and all of them will be discussed within the last chapter.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.