Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Diagnosis of Pneumatic Cylinders Using Acoustic Emission Methods
Mahmoud, Houssam ; Baran,, Ireneusz (oponent) ; Santos, Serge Dos (oponent) ; Mazal, Pavel (vedoucí práce)
This work demonstrates the development of a new efficient diagnostic procedure for checking the function of pneumatic cylinders using acoustic emission. The aim of this work is to suggest and determine the diagnostic criteria that evaluate the quality of the pneumatic cylinder. The first step is to find the typical acoustic emission signal associated with a particular type of damage in the cylinder by the frequency spectrum. This parameter was replaced later by the parameter RMS during the monitoring of changes in the test results. The relationship between Acoustic Emission (AE) and different types of defects in pneumatic cylinders was discussed, shedding light on a new approach to determining these types of defects and distinguishing between them through Acoustic Emission. The second step is to compare undamaged and damaged cylinders to find distinctive differences that determine whether the cylinder is damaged or undamaged. Several undamaged cylinders were tested by acoustic emission before artificial defects were created in each one. The signals from the progress and retreat strokes were recorded and analysed into many parameters. The RMS was normalized, and the different responses between damaged and undamaged pneumatic cylinders were recognized by the time delay of the strokes. The differences were identified by the ratio of the max RMS from the sensor that fixed in the head cap of the cylinder and the max RMS from the sensor that fixed in the rear cap of the cylinder for one cycle in the retreat stroke. The damaged and undamaged cylinders were distinguished using the difference in energy values which present in the signals from the two sensors in the retreat stroke. The final evaluation of the cylinder was determined by the calculation of the total value of RMS. In the third step in the experiment, the cylinders were loaded gradually by different weights in a vertical direction. The signals of the acoustic emission were recorded from the progress and retreat strokes and then analysed. The time delay is calculated between the digital input and the initiation of movement. The energy and root mean square of the acoustic emission compare between the different responses in damaged and undamaged pneumatic cylinders, with and without loading. The results of the test showed a linear relationship between the RMS curve and loading. The defect affects the relationship between the applied load and the recorded signal of the sensors.
Diagnosis of Pneumatic Cylinders Using Acoustic Emission Methods
Mahmoud, Houssam ; Baran,, Ireneusz (oponent) ; Santos, Serge Dos (oponent) ; Mazal, Pavel (vedoucí práce)
This work demonstrates the development of a new efficient diagnostic procedure for checking the function of pneumatic cylinders using acoustic emission. The aim of this work is to suggest and determine the diagnostic criteria that evaluate the quality of the pneumatic cylinder. The first step is to find the typical acoustic emission signal associated with a particular type of damage in the cylinder by the frequency spectrum. This parameter was replaced later by the parameter RMS during the monitoring of changes in the test results. The relationship between Acoustic Emission (AE) and different types of defects in pneumatic cylinders was discussed, shedding light on a new approach to determining these types of defects and distinguishing between them through Acoustic Emission. The second step is to compare undamaged and damaged cylinders to find distinctive differences that determine whether the cylinder is damaged or undamaged. Several undamaged cylinders were tested by acoustic emission before artificial defects were created in each one. The signals from the progress and retreat strokes were recorded and analysed into many parameters. The RMS was normalized, and the different responses between damaged and undamaged pneumatic cylinders were recognized by the time delay of the strokes. The differences were identified by the ratio of the max RMS from the sensor that fixed in the head cap of the cylinder and the max RMS from the sensor that fixed in the rear cap of the cylinder for one cycle in the retreat stroke. The damaged and undamaged cylinders were distinguished using the difference in energy values which present in the signals from the two sensors in the retreat stroke. The final evaluation of the cylinder was determined by the calculation of the total value of RMS. In the third step in the experiment, the cylinders were loaded gradually by different weights in a vertical direction. The signals of the acoustic emission were recorded from the progress and retreat strokes and then analysed. The time delay is calculated between the digital input and the initiation of movement. The energy and root mean square of the acoustic emission compare between the different responses in damaged and undamaged pneumatic cylinders, with and without loading. The results of the test showed a linear relationship between the RMS curve and loading. The defect affects the relationship between the applied load and the recorded signal of the sensors.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.