National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 
Chaotic random variables in applied probability
Večeřa, Jakub ; Beneš, Viktor (advisor) ; Reitzner, Matthias (referee) ; Pawlas, Zbyněk (referee)
This thesis deals with modeling of particle processes. In the first part we ex- amine Gibbs facet process on a bounded window with discrete orientation distri- bution and we derive central limit theorem (CLT) for U-statistics of facet process with increasing intensity. We calculate all asymptotic joint moments for interac- tion U-statistics and use the method of moments for deriving the CLT. Moreover we present an alternative proof which makes use of the CLT for U-statistics of a Poisson facet process. In the second part we model planar segment processes given by a density with respect to the Poisson process. Parametric models involve reference distributions of directions and/or lengths of segments. Statistical methods are presented which first estimate scalar parameters by known approaches and then the reference distribution is estimated non-parametrically. We also introduce the Takacs-Fiksel estimate and demonstrate the use of estimators in a simulation study and also using data from actin fibres from stem cells images. In the third part we study a stationary Gibbs particle process with determin- istically bounded particles on Euclidean space defined in terms of a finite range potential and an activity parameter. For small activity parameters, we prove the CLT for certain statistics of this...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.