National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
2D structures based on metal phosphonates; relationships between arrangement and properties studied by molecular simulations methods
Škoda, Jakub ; Pospíšil, Miroslav (advisor) ; Čapková, Pavla (referee) ; Praus, Petr (referee)
This work deals with the structural analysis of layered zirconium sulfophenylphosphonates and their intercalates with the use of the classical molecular simulation methods. The inner composition of both fully and partially sulfonated layers was determined in agreement with available experimental data, especially chemical analysis, thermogravimetric measurements and X-ray diffraction. The calculations revealed the positions of the water molecules in the planes of sulfo groups which strongly affect the resultant diffraction pattern. Within the zirconium sulfophenylphosphonate layered structure, the arrangements of intercalated species based on optically active dipyridylamine molecules and cations of sodium, copper and iron were solved with the respect to the agreement with experimental results and values of potential energy. In case of the dipyridylamine molecules and its derivatives, the resultant disordered partially row arrangements of the organic molecules in the interlayer were showed to influence the dipole moment of the intercalate. From this point of view, nitro-derivative has been picked out as the most suitable for potential applications. Regarding the intercalated cations, sodium cations take up the space of water molecules next to the sulfo groups while copper and iron cations are distributed in a...
2D structures based on metal phosphonates; relationships between arrangement and properties studied by molecular simulations methods
Škoda, Jakub ; Pospíšil, Miroslav (advisor) ; Čapková, Pavla (referee) ; Praus, Petr (referee)
This work deals with the structural analysis of layered zirconium sulfophenylphosphonates and their intercalates with the use of the classical molecular simulation methods. The inner composition of both fully and partially sulfonated layers was determined in agreement with available experimental data, especially chemical analysis, thermogravimetric measurements and X-ray diffraction. The calculations revealed the positions of the water molecules in the planes of sulfo groups which strongly affect the resultant diffraction pattern. Within the zirconium sulfophenylphosphonate layered structure, the arrangements of intercalated species based on optically active dipyridylamine molecules and cations of sodium, copper and iron were solved with the respect to the agreement with experimental results and values of potential energy. In case of the dipyridylamine molecules and its derivatives, the resultant disordered partially row arrangements of the organic molecules in the interlayer were showed to influence the dipole moment of the intercalate. From this point of view, nitro-derivative has been picked out as the most suitable for potential applications. Regarding the intercalated cations, sodium cations take up the space of water molecules next to the sulfo groups while copper and iron cations are distributed in a...
Study of photocatalytic activity of Zn.sub.x./sub.Cd.sub.1-x./sub.S quantum dots in dependence on their composition using methylene blue
Praus, P. ; Svoboda, L. ; Hospodková, Alice ; Mamulová Kutláková, K.
ZnCdS quantum dots (QDs) with the different composition were prepared by precipitation of zinc and cadmium acetates with sodium sulphide in the presence of cetyltrimethylammonium bromide (CTAB) used for stabilization of their aqueous colloid dispersions. Transition energies of these quantum dots were determined from the UV-VIS spectra of QDs colloid dispersions and consequently used for calculation of the QDs sizes according to the Schrodinger equation. The ZnCdS QDs size was found to be significantly influenced by their composition: the QDs size decreased with the increasing Zn content. The photocatalytic activity of the ZnCdS QDs was studied using the methylene blue decomposition under UV irradiation. Different photocatalytic activity depending on the composition x was observed and explained. The maximal photocatalytic activity was achieved for x = 0.6 when the energy of the irradiation photons was still sufficient to generate electron-hole pairs in majority of the QDs and at the same time the photocatalytic surface area was maximal.\n
Photocatalytic activity of ZnxCd.sub.1-x./sub.S quantum dots in dependence on their composition
Praus, P. ; Svoboda, L. ; Hospodková, Alice ; Mamulová-Kutláková, K.
ZnxCd1-xS quantum dots (QDs) with the different composition x were prepared by precipitation of Zn and Cd acetates with sodium sulphide from aqueous colloid dispersions. Transition energies of these QDs were determined from UV-VIS spectra of the QDs colloid dispersions and consequently used for calculation of the QDs sizes according to the Schrödinger equation. The ZnCdS QDs size was found to be significantly influenced by their composition, decreased with increasing the Zn content. The QDs were also characterized by TEM, X-ray powder diffraction and PL. The photocatalytic activity of the QDs was studied using the methylene blue decomposition under UV irradiation with the maximum intensity of 365 nm. Different photocatalytic activity depending on the composition x was observed. Quantum levels of the QDs have important influence on their photocatalytic activity as a result of quantum size effect. The maximal photocatalytic activity was achieved for x=0.6.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.