National Repository of Grey Literature 106 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Evaluation of Fracture Tests on Selected Building Material Specimens via Double-K Model
Havlíková, Ivana ; Králík,, Juraj (referee) ; Němeček,, Jiří (referee) ; Keršner, Zbyněk (advisor)
The purpose of dissertation is the analysis of the calculation of fracture parameters using Double-K fracture model for quasi-brittle specimens with the stress concentrator loaded by three-point bending or wedge splitting. To calculation of these parameters was used the developed DKFM_BUT software in Microsoft Excel application with using of Visual Basic programming language. Furthermore, the adequate shape functions and compliance functions were introduced for the selected wedge splitting test configurations. Main part of this dissertation is the series of comprehensively implemented and evaluated fracture experiments on specimens from advanced building materials, while the attention was paid to the analysis of experimental data. Finally, the selected results obtained using mentioned software support were presented and discussed.
Modelling of Free Beam Loaded by Follower Load
Mašek, Jan ; Keršner, Zbyněk (referee) ; Frantík, Petr (advisor)
The aim of the presented thesis is to create a non-linear dynamical model of a free rod loaded by a follower force. The model is inspired by a slender flexible missile loaded by an end thrust. Because of the nature of the problem, the model has to be capable of large deflections. Another requirements on the model are to implement material the damping and the damping due to the interaction of the model with a surrounding medium and the influence of gravitational field. In the future, the model will be used for examination of the post-critical behavior of such construction. Therefore low computational demands of the simulation are required. The derived formulation of the numerical model will be implemented using the Java programming language. For observation of the simulation process and for monitoring of the state variables, an appropriate graphic interface will be created. The accuracy of the derived model will be verified by the comparison of selected values to the analytical solution.
Shear bearing capacity of composite slabs
Holomek, Josef ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Keršner, Zbyněk (referee) ; Bajer, Miroslav (advisor)
The subject of the submitted work is the experimental and theoretical investigation of composite slabs. The work also deals with creation of numerical models of composite slabs. The design of a new type of steel sheeting for composite slab according to nowadays standards requires full scale laboratory bending tests. An alternative to the bending tests are the small scale shear tests. The small scale shear tests as well as corresponding design methods have already been investigated by many researchers. Therefore several test arrangements and corresponding design methods can be found in literature but none of them is included in standards yet. The submitted thesis describes three of the alternative design methods: Slip- Block Test, Simplified Method and Built-up Bars. The test arrangement is proposed to be usable in all these methods. The small scale shear test have been performed in laboratory in several modifications. The results were used to calculate the bending resistance of the slab by the alternative design methods. The calculated bending resistances were mutually compared, compared with the performed bending tests resistances and the resistances by the methods described in Eurocode: m-k method and partial connection method. A sensitivity studies of the input parameters in alternative design methods are presented as well. The optimal design method for use in practice was searched and recommended based on the performed studies, accuracy and laboriousness of the methods. The shear tests were used also to measure longitudinal shear resistance of the additional shear anchors. The alternative design methods were used to predict bending resistance of the slab using these anchors and the results were compared. The numerical simulation of the composite action of the slab by the finite element methods is modelled in Atena software. The models serves to perform parametrical studies and to better understand of the behaviour of the slab in partial composite action.
Fracture tests of selected specimens with special aggregates: experiments and numerical simulation
Majda, Tomáš ; Malíková, Lucie (referee) ; Keršner, Zbyněk (advisor)
The diploma thesis deals with selected fracture tests and evaluation of fracture parameters of cement-based composite. One part of the thesis deals with cement-based composite with glass spherical aggregate of a single fraction of 2 mm. After production, the beams with dimensions of 20×40×200mm exposed to temperatures in the range from 100 to 1000 °C for one hour. Using the non-destructive ultrasonic pulse method, the degree of damage caused by termal load was determined. Selected specimen with central edge notch were then tested in three-point bending and fragments after these tests were tested in compression. In the second part, attention was paid to the evaluation of fracture tests conducted on specimen from drill-cores taken from selected objects located at the former Transgas Gas Control Center in Prague. The specimen were provided with a chevron notch before being tested in three-point bending. The measured data was modified by the GTDiPS program and in the case of the glass composite the StiCrack program was used to evaluate fracture parameters.
Determination of Fatigue Characteristics of Concrete Using Fracture-Mechanics Parameteres
Šimonová, Hana ; Králik,, Juraj (referee) ; Terzijski, Ivailo (referee) ; Bílek,, Vlastimil (referee) ; Keršner, Zbyněk (advisor)
The topic of this PhD. thesis is the issue of determining fatigue characteristics of selected cement-based composites. First, the history of fatigue of metal is mentioned, and some basic notions related to fatigue are clarified. The thesis also summarizes current research in the field of cement-based composites fatigue, and failure mechanisms of plain concrete during static and dynamic tests are described. Furthermore, the thesis deals with the evaluation of static and dynamic experiments’ results with extensive series of C30/37 and C45/55 class concrete specimens. In order to achieve relevant fatigue test evaluation which takes into account the age of the specimens, a new correction procedure of the data measured based on the approximation of the basic fracture-mechanics parameters of tested materials over time was suggested and verified. The annexes of this thesis present complete data obtained during static and dynamic experiments.
Advanced evaluation of fracture tests of selected rock specimens
Kubeš, Pavel ; Veselý, Václav (referee) ; Keršner, Zbyněk (advisor)
This bachelor's thesis deals with the advanced evaluation of fracture tests of selected rock (sandstone) specimens. The first part describes several fracture models/methods, fracture-mechanical parameters, process and configuration of the tests, used specimens and the procedure of data processing using the program GTDiPS. The second part contains neatly sorted evaluation of load-displacement diagrams. The results of the work are calculated fracture-mechanical parameters of various sandstones and their mutual comparison.
Three-dimensional Spring Networks and Their Applications
Štafa, Michal ; Brožovský, Jiří (referee) ; Keršner, Zbyněk (referee) ; Frantík, Petr (advisor)
The presented work highlights the remarkable potential of physical discretization – lattice model FyDiK in three-dimensional modelling of non-linear problems in structural mechanics. To achieve the objectives a software application, that implements the model FyDiK along with the 3D graphical user interface has been developed and thus is able to assemble a spring network model. Such a model was used for modelling the formation of cracks and fracture in the concrete specimens and also to model a plastic behaviour of steel I-beam. The calculations were performed by a massive parallelization on CUDA platform. In the first part the basic principles on which the work is based are introduced. Subsequently, a detailed description of individual parts of the model and the issue of parallelization by graphics cards are presented. In the next part the creation of the required software and improving of the model properties of mentioned materials are described. That is followed by evaluation of the achieved results with the comparison of other modelling software. The conclusion summarizes the achievements and suggestions for the further development possibilities of the presented method of modelling.
Study of influence of input parameters for the numerical modeling of the compression test
Polách, Marek ; Keršner, Zbyněk (referee) ; Lehký, David (advisor)
The thesis analyses influence of input parametres of the 3D Non Linear Cementitious 2 material model for the numerical modeling of compression test performed in ATENA 2D and ATENA 3D software. The aim is to identify parametres with considerable influence and subsequently replicate the load-deflection curve obtained from laboratory compression test by numerical modeling. The effects of selected model and material model settings are studied on three kind of models in total. As tools for analyzing the effects, deterministic and statistic sensitivity analyses were chosen. Parametres with significant influence will be highlighted and added to the group of parametres obtained from numerical modeling of three-point bending test. This will create a set of parametres of considerable influence when it comes to modeling advanced structures with different types of stresses.
Simulation of Idiofonic System
Múčka, Martin ; Keršner, Zbyněk (referee) ; Frantík, Petr (advisor)
The thesis deals with dynamic simulation of real bell behavior over time. The model is created according to principles of physical discretization as a spring in the FyDiK3D software. In order for the model to be declared as relevant, it is necessary to prove the behavior of the structures used in the elementary tasks of the mechanics. It shows the correlation between the stiffness of normal and diagonal springs. Describes how to use software import tools to create a model. The resulting model approaches its real bell behavior.
Fracture of selected building composites in the vicinity of aggregate-matrix-interface
Vyhlídal, Michal ; Malíková, Lucie (referee) ; Keršner, Zbyněk (advisor)
The interface between aggregate grains and matrix in cementitious composites is their weakest element. The topic is particularly significant in the case of high performance and high strength concrete technology for which the eliminination or reduction of these weak links are necessary. The aim of this thesis is to determine the influence of the interface on the fracture behaviour of the cementitious composites. The fracture experiments were performed for this purpose and were complemented by the nanoindentation’s results and scanning electron microscopy results. Numerical model was created in ANSYS software on the basis of these data and the fracture toughness values of the interface were evaluated by means of the generalized fracture mechanics principles. Conclusion of the thesis is proof that the interface properties have a significant influence on the fracture behaviour of cementitious composites.

National Repository of Grey Literature : 106 records found   previous11 - 20nextend  jump to record:
See also: similar author names
6 Keršner, Z.
Interested in being notified about new results for this query?
Subscribe to the RSS feed.