National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Optimization of use properties Lead-Acid batteries
Lábus, Radek ; Dostál, Zdeněk (referee) ; Jareš, Petr (referee) ; Křivík, Petr (advisor)
This thesis focuses on the limitations of degradation mechanisms of Lead-Acid batteries, which significantly contributes unequal distribution of current (and therefore internal resistance, charge passed and power loss) on the surface of the electrodes of Lead-Acid battery. The unevenness of distribution of these parameters significantly influences the distribution of current tabs on the electrodes. In this work it was developed realistic model of Lead-Acid battery cell with plate electrodes with different variants of the distribution of current tabs. Measured results obtained in this model were compared with the results found out from the mathematical simulations. Through these simulations, it was possible to take a look deeply into the processes and changes in the electrodes of Lead-Acid batteries during discharge. Goal of this work was for predefined variants of positioning of the current tabs to simulate distribution of current, internal resistance, charge passed and power loss during discharge. Another goal was to compare the different variants and to find the optimal variant of current tabs positioning based on minimizing of unevenness of examined variables distribution.
Causes of Premature Capacity Loss of Lead-Acid Accumulators Operating in PSoC Mode in Hybrid Electric Vehicles
Bilko, Radek ; Jareš, Petr (referee) ; Dostál, Zdeněk (referee) ; Bača, Petr (advisor)
This thesis is completion of whole stage of researches and it is a result of existing need of increase efficiency, utilization rate and service life of lead acid batteries VRLA planned for utilization in hybrid electric vehicles in mode of partial state-of-charge PSoC. During the application of mode PSoC at lead acid battery occurs irreversible sulfation of negative electrodes and thus to loss their charging capability. This phenomenon, according to the latest trend called PCL3, isn´t connected with subsequently referred effects PCL1, PCL2, show up on positive electrodes. Result of this thesis is finding a new types of additives, determine their optimum amount and size in such a way that innovated composition of negative active materials be able to resist sulfation of negative electrode during operation in mode PSoC. Part of the effort to clarify actions ongoing on negative active material and causes non-returnable sulfation electrodes is also monitoring of structural changes electrode active material by using environmental scanning electron microscope, which helped to clarify processes related with loss of capacity in mode PSoC. Special attention during reserches was focused on study of the properties contact layers between collector and electrodes active material and itself active materials lead-acid battery druring exploitation. There were gain new information about influence repeated cycling of (charging, discharging) the critical area of the electrodes. Measurements was carried out on specially prepared experimental electrodes DC Difference Method, this enabled obtain data in situ.
Microscopic Observations of Active Mass Structures of the Negative Electrode of a Lead-Acid Battery
Zimáková, Jana ; Dostál, Zdeněk (referee) ; Kohout,, Jan (referee) ; Bača, Petr (advisor)
This doctoral dissertation deals with the study of the effect of additives on the properties of the negative electrode of a lead-acid battery. The work focuses on the investigation of the additive/base material interface for the negative electrode (so-called active mass) using atomic force microscopy (AFM). A lead sheet was used as the base material, on which the given additive was applied. The effects of carbon, TiO2, glass fibers and Indulin AT were specifically investigated. The negative electrode was cycled by a potentiostat in a defined manner and the morphology of the electrode surface was continuously scanned by AFM. This created a time sequence of images on which events on the surface of the electrode during its charging/discharging were captured. These records serve to better understand the effect of additives on the resulting properties of constructed lead-acid cells, specifically on the ability to form or dissolve PbSO4 crystals, which are formed during cell discharge and are responsible for the decrease in total capacity - gradual surface sulfation.
Impedance Measurement of Lead-acid Accumulator
Abraham, Pavel ; Dostál, Zdeněk (referee) ; Jareš, Petr (referee) ; Bača, Petr (advisor)
This dissertation deals with impedance measurements of lead-acid accumulator. Main aim was to study recent problems of impedance measurements of lead-acid accumulator and most importantly to extend difference method and also to interpret its results. The original DC difference method was developed earlier at our Power Sources Laboratory of Department of Electrical and Electronic Technology. The DC difference method and also the new AC difference method are both non-destructive, which means that experimental data can be obtained in situ. New method provides more accurate set of information because of its wide frequency range nature. Electrodes of lead-acid accumulator were analysed with special attention to collector / active mass double layer and to active mass itself. Various states and operation regimes were investigated. Obtained data contributed to better understanding of involved degradation mechanisms. Main aim of other experiment was to observe and interpret corrosion rates of electrode collector composed of various lead alloys. Last but not least charge and discharge regimes e.g. 100% deep of discharge regime, partial state of charge (PSoC) regime and pulse charge regime were analysed. BioLogic VSP was the device used for almost all experimental measurements. It takes a lot of effort to optimise VSP operation regime. Best operation regime of VSP for the difference method was suggested too.
Microscopic Observations of Active Mass Structures of the Negative Electrode of a Lead-Acid Battery
Zimáková, Jana ; Dostál, Zdeněk (referee) ; Kohout,, Jan (referee) ; Bača, Petr (advisor)
This doctoral dissertation deals with the study of the effect of additives on the properties of the negative electrode of a lead-acid battery. The work focuses on the investigation of the additive/base material interface for the negative electrode (so-called active mass) using atomic force microscopy (AFM). A lead sheet was used as the base material, on which the given additive was applied. The effects of carbon, TiO2, glass fibers and Indulin AT were specifically investigated. The negative electrode was cycled by a potentiostat in a defined manner and the morphology of the electrode surface was continuously scanned by AFM. This created a time sequence of images on which events on the surface of the electrode during its charging/discharging were captured. These records serve to better understand the effect of additives on the resulting properties of constructed lead-acid cells, specifically on the ability to form or dissolve PbSO4 crystals, which are formed during cell discharge and are responsible for the decrease in total capacity - gradual surface sulfation.
Optimization of use properties Lead-Acid batteries
Lábus, Radek ; Dostál, Zdeněk (referee) ; Jareš, Petr (referee) ; Křivík, Petr (advisor)
This thesis focuses on the limitations of degradation mechanisms of Lead-Acid batteries, which significantly contributes unequal distribution of current (and therefore internal resistance, charge passed and power loss) on the surface of the electrodes of Lead-Acid battery. The unevenness of distribution of these parameters significantly influences the distribution of current tabs on the electrodes. In this work it was developed realistic model of Lead-Acid battery cell with plate electrodes with different variants of the distribution of current tabs. Measured results obtained in this model were compared with the results found out from the mathematical simulations. Through these simulations, it was possible to take a look deeply into the processes and changes in the electrodes of Lead-Acid batteries during discharge. Goal of this work was for predefined variants of positioning of the current tabs to simulate distribution of current, internal resistance, charge passed and power loss during discharge. Another goal was to compare the different variants and to find the optimal variant of current tabs positioning based on minimizing of unevenness of examined variables distribution.
Causes of Premature Capacity Loss of Lead-Acid Accumulators Operating in PSoC Mode in Hybrid Electric Vehicles
Bilko, Radek ; Jareš, Petr (referee) ; Dostál, Zdeněk (referee) ; Bača, Petr (advisor)
This thesis is completion of whole stage of researches and it is a result of existing need of increase efficiency, utilization rate and service life of lead acid batteries VRLA planned for utilization in hybrid electric vehicles in mode of partial state-of-charge PSoC. During the application of mode PSoC at lead acid battery occurs irreversible sulfation of negative electrodes and thus to loss their charging capability. This phenomenon, according to the latest trend called PCL3, isn´t connected with subsequently referred effects PCL1, PCL2, show up on positive electrodes. Result of this thesis is finding a new types of additives, determine their optimum amount and size in such a way that innovated composition of negative active materials be able to resist sulfation of negative electrode during operation in mode PSoC. Part of the effort to clarify actions ongoing on negative active material and causes non-returnable sulfation electrodes is also monitoring of structural changes electrode active material by using environmental scanning electron microscope, which helped to clarify processes related with loss of capacity in mode PSoC. Special attention during reserches was focused on study of the properties contact layers between collector and electrodes active material and itself active materials lead-acid battery druring exploitation. There were gain new information about influence repeated cycling of (charging, discharging) the critical area of the electrodes. Measurements was carried out on specially prepared experimental electrodes DC Difference Method, this enabled obtain data in situ.
Impedance Measurement of Lead-acid Accumulator
Abraham, Pavel ; Dostál, Zdeněk (referee) ; Jareš, Petr (referee) ; Bača, Petr (advisor)
This dissertation deals with impedance measurements of lead-acid accumulator. Main aim was to study recent problems of impedance measurements of lead-acid accumulator and most importantly to extend difference method and also to interpret its results. The original DC difference method was developed earlier at our Power Sources Laboratory of Department of Electrical and Electronic Technology. The DC difference method and also the new AC difference method are both non-destructive, which means that experimental data can be obtained in situ. New method provides more accurate set of information because of its wide frequency range nature. Electrodes of lead-acid accumulator were analysed with special attention to collector / active mass double layer and to active mass itself. Various states and operation regimes were investigated. Obtained data contributed to better understanding of involved degradation mechanisms. Main aim of other experiment was to observe and interpret corrosion rates of electrode collector composed of various lead alloys. Last but not least charge and discharge regimes e.g. 100% deep of discharge regime, partial state of charge (PSoC) regime and pulse charge regime were analysed. BioLogic VSP was the device used for almost all experimental measurements. It takes a lot of effort to optimise VSP operation regime. Best operation regime of VSP for the difference method was suggested too.

See also: similar author names
1 Dostál, Z.
5 Dostál, Zbyněk
Interested in being notified about new results for this query?
Subscribe to the RSS feed.